При публиковании работы, содержащей столько непреодолимых трудностей, я должен принести извинения за то, что исследования не обнаружили сколько-нибудь близкую возможность удовлетворительного решения противоречий, обсужденных в главе X, или возможности лучшег® проникновения в природу множеств. Повторяющееся обнаружение ошибок в решениях, которые в свое время меня удовлетворяли, привело к тому, что эти проблемы стали казаться таквгми, что в них только скрывается кажущаяся удовлетворительной теория, которая при достаточно долгом размышлении могла быть создана. Поэтому я считаю более правильным просто отметить трудности, чем ждать, пока я буду убежден в истинности некоторых, возможно полностью неверных, положений.
Я должен выразить свою благодарность директору Университетского издательства и его секретарю г-ну Р. Т. Райту за помощь !и содействие в отношении данного томо.
Лондон, декабрь 1902 г.
ВЕЙЛЬ
Гермап Вейль родился в небольшом городке Эльмсхорн вблизи Гамбурга, в семье адвоката. Директором гимназии, где он учился, был двоюродный брат Давида Гильберта; именно в Геттингенский университет, где профессором был Гильберт, поступил в 1904 г. Вейль. Оп учился четыре года, а затем стал приват-доцентом университета. Один год Вейль провел в Мюнхене, у Клейна и Зоммерфельда; однако, женившись в 1913 г., Вейль переехал в Цюрих, где получил кафедру в Высшей федеральной технической школе.
Разносторонний по интересам Вейль интенсивно работал в различных областях математики. Вместе с голландским математиком Броуэром Вейль возглавил так называемое интуиционистское направление в математике, противостоящее формализму Гильберта. Быть может, наибольшее конкретное значение имеют работы Вейля по теории групп и инвариантов. Ныне эта область математики получила исключительное значение дли фивики, когда наиболее общие физические законы мы стремимся связывать со свойствами симметрии частиц, пространства и времени. В физике Вейль работал в области теории относительности и квантовой механики. Владея блестящим литературным стилем, Вейль много писал по методологии науки и философским проблемам естествознания. В 1930 г. Вейль принял кафедру Гильберта в Геттингене. Но это время — время наступления фашизма — было тяжким для него. В 1933 г. Вейль покидает Германию и переезжает в США. Там он становится сотрудником Института перспективных исследований в Принстоне, где уже работали Эйпштейп, Вигнер и Нейман.
В 1951 г. Вейль вернулся в Европу, в Цюрих, и его лебединой песней стала его замечательная популярная книга «Симметрия» (1952). Вскоре после своего 70-летнего юбилея Вейль умер.
Мы приводим предисловие к книге Вейля «Теория групп и квантовая механика» (1928) и предисловие к его итоговой монографии «Классические группы, их инварианты и представления» (1939).
В последнее время все более и более признается важность теоретпко-группового подхода к общим законам квантовой теории. Поскольку в течение ряда лет я был глубоко поглощен теорией представлений непрерывных групп, мне казалось существенным и важным представить отчет о достижениях математиков, работающих в этой области, в виде, соответствующем требованиям квантовой физики. Дополнительный толчок этому дает тот факт, что с чисто математической точки зрения уже невозможно проводить столь резкой грани между конечными и непрерывными группами при обсуждении теории их представлений так, как ято до сих пор делалось. Желание показать на примерах некоторых наиболее важных случаев, как возникающие в теории групп понятия находят свое приложение к физике, привело к необходимости включить короткое введение в основы квантовой физики, поскольку ко времени написания этой книги не было такого изложения, к которому я мог бы отослать читателя. Эта книга, если она достигнет своей цели, должна дать читателю возможность изучить основы теории групп и квантовой механики, так же как и понять отношение, существующее между этими двумя предметами. Математические части книги написаны, имея в виду интересы физика, так же как и обратное. Я специально подчеркиваю «взаимность» между представлениями симметричных групп перестановок и полной линейной группой. Этой зависимостью в физической литературе до сих пор пренебрегали, несмотря на то, что она естественно следует из концептуальной структуры квантовой механики.