Бертран Артур Вильям Рассел родился в Лопдоне в аристократической семье. Он получил прекрасное домашнее образование, затем оп поступил в Кембриджский университет, который с блеском окончил в 1894 г. Несколько месяцев он был атташе в Британском посольстве в Париже; год провел в Берлине, занимаясь историей немецкой социал-демократии. Возвратившись в Кембридж, он начинает работать в области оснований математики и математической логики. В 1903 г. Рассел публикует «Основы математики», а через два года выходит монография «Principia Mathematica», нанисапная совместно с Уайтхедом. Главным результатом этих исследований стало обнаружение противоречивости оснований теории множеств, сформулированной Расселом в виде его известных парадоксов. Сложность решения этой проблемы была сформулирована Расселом афористически: «Чистая математика — это такой предмет, где мы не знаем, о чем мы говорим, и не знаем, истинно ли то, что мы говорим».
В последующие годы Рассел по существу оставляет математику и основные силы уделяет фхглософпи, теории познания, этической и общественно-политической проблематике. Здесь невозможно дать даже краткое резюме исключительно раз-нообразпого и противоречивого творчества этого выдающегося мыслителя. Его деятельность была отмечена Нобелевской премией по литературе в 1954 г.
Жизнь Рассела так же полна противоречий, как и его работы. Во время первой мировой воины оп был исключен из колледжа и заключен в тюрьму за антивоенные выступления. Его взгляды на мораль и религию привели к высылке из США, куда он был приглашен читать лекции. После второй мировой войны Рассел, четко поняв всю опасность, которая угрожает человечеству в случае ядерного конфликта, активно выступил в защиту мира. В 1955 г. Рассел составил обращение к правительствам стран мира, подписанное вместе с Эйнштейном. Известие о его подписи Рассел получил вместе с сообщением о смерти своего друга.
Рассел дожил до глубокой старости: он умер на 98-м году жизни. За два года до этого он еще участвовал в сидячей демонстрации защитников мира па улицах Лондона.
Мы приводим предисловие к первому изданию «Основ математики» (1903).
У данной работы две главные цели. Одна состоит в доказательстве того, что вся чистая математика рассматривает исключительно только понятия, определенные через очень небольшое число основных логических понятий, и что все ее положения выводятся из очень небольшого числа основных логических принципов. Эта цель рассмотрена в II— YII частях этого тома и будет доказана путем строгого символического мышления во втором томе. Доказательство этого тезиса обладает, если только я не ошибаюсь, всей определенностью и точностью, на которую способно математическое доказательство. Поскольку этот тезис лпшь недавно появился среди математиков и почти полностью отрицается философами, в этом томе я предпринял защиту разных сторон этого тезиса по мере необходимости против тех теорий, которые наиболее распространены пли же наиболее трудны для опровержения. Я также попытался представить на возможно менее специализированном языке основные этапы рассуждений, которыми этот тезис устанавливается.
Другая цель этой работы, которой посвящена часть I, заключается в объяснении фундаментальных понятий, которые математика принимает как неопределяемые. Это чисто философский труд, и я не могу себе льстить тем, что сделал больше, чем только указал на обширную область исследований и дал примеры тех методов, которыми эти исследования можно вести. Обсуждение неопределяемых понятий — в чем заключена основная часть философской логики — представляет попытку увидеть ясно и заставить уяснить других рассматриваемые вещи так, чтобы они предстали разуму с той же полнотой и наглядностью, как цвет или вкус ананаса. Когда неопределяемые, как в данном случае, получаются первоначально как неизбежный остаток в процессе анализа, то часто проще знать, что такие понятия должны существовать, чем их действительно познать. Этот процесс аналогичен тому, который привел к открытию Нептуна, с той лишь разницей, что заключительная стадия — поиски с помощью мысленного телескопа вещей, о существовании которых сделано предположение,— часто бывает наиболее трудной частью всего исследования. Я должен признать, что в случае классов я не смог предложить какого-либо понятия, удовлетворяющего условиям, сформулированным для понятия
Второй том, к работе над которым мне удалось привлечь А. Уайтхеда, будет обращен исключительно к математикам. В нем будут содержаться цепочки рассуждений, начинающиеся с посылок символической логики и ведущие через арифметику как конечного, так и бесконечного к геометрии в том же порядке, как это принято и в настоящем томе. В нем будут содержаться также различные оригинальные выводы, в которых метод профессора Пеано, дополненный логикой отношений, показал себя могучим инструментом исследований.