Итак, Древний Египет. Теократическое государство с необычайно сильной центральной властью. В качестве действенного инструмента поддержания централизации, повиновения, порядка выступает постоянное строительство пирамид, требующее колоссальных людских и материальных ресурсов и объединяющее усилия всей страны. Авторитет фараона и жрецов непререкаем. Непререкаем и авторитет написанного слова. Если что-то сказал или написал жрец, писец, учитель, значит, это есть истина. Если что-то написано на папирусе, это есть истина. Убедительность основывается на авторитетности источника.
Математические тексты Древнего Египта содержат готовые правила без какого бы то ни было их обоснования. Говоря об отсутствии обоснования, мы имеем здесь в виду современное понимание слова «обоснование». С точки зрения древнего египтянина, написанное на папирусе было полностью обосновано тем, что исходило из авторитетного источника и было запечатлено в авторитетной форме записи на папирусе. Факт занесения на папирус, запечатления на нём и был сам по себе доказательством. Действительно, этого было достаточно для того, чтобы с его помощью убеждать других. Ряд правил для вычисления площадей треугольников и четырёхугольников не получил в наши дни однозначного толкования; идут споры, как надо понимать входящие в них термины [4, глава IV, § 2, а]. В зависимости от толкования эти формулы должны восприниматься либо как точные, либо как приближённые, либо как вообще неверные. Говоря о неверной формуле, мы имеем в виду выражение площади треугольника через полупроизведение основания на боковую сторону[166]
. Многие исследователи считают, впрочем, что соответствующий древнеегипетский термин надо трактовать не как боковую сторону, а как высоту (и тогда формула из папируса оказывается верной). Однако, даже если бы этот термин означал в действительности не высоту, а боковую сторону, соответствующую (неверную, с нашей современной точки зрения) формулу следует считать доказанной в древнеегипетском понимании, ведь эта формула убедительно обоснована тем, что она (конечно, записанная не с помощью математических символов, а посредством слов) содержится в авторитетном документе.Иначе обстояло дело в Древней Греции. Сравнительно (с Египтом) небольшие государственные образования с народными собраниями. В народных собраниях выступают ораторы, не являющиеся носителями априорного авторитета. Они должны убедить слушателей посредством рассуждения. Формулирование правильных рассуждений становится повседневной и актуальной потребностью. Отсюда – зарождение логики у Сократа и окончательное оформление её в виде науки у Аристотеля. Отсюда же – приближающиеся к современным представления о доказательстве, начало дедуктивного метода в математике. Основой математической убедительности становится рассуждение. Возникает понятие об основах правильных рассуждений – аксиомах и правилах логического вывода. Убедительно (и следовательно, доказуемо) то, что может быть получено «законным рассуждением» из отправных утверждений, признаваемых справедливыми. (Если задуматься над тем, какие дисциплины опираются на понятие доказательства, то окажется, что таких дисциплин две: математика и юриспруденция. По-видимому, местом их рождения следует признать Древнюю Грецию: именно там возникла культура убеждения путём рассуждения, в частности – путём прения сторон. В этом смысле математику можно назвать младшей сестрой юриспруденции.)
Наконец, Индия. Хотя те геометрические иллюстрации, на которые мы собираемся ссылаться, относятся к средневековой Индии, скорее всего, они появились уже в Индии древней. Вообще, датировка индийских математических представлений вызывает значительные трудности, поскольку одни тексты могут представлять собой изложение других, более ранних. С другой стороны, это и не так существенно: в то время как средневековый Египет и средневековая Греция не имели ничего общего с Древним Египтом и Древней Грецией, средневековая Индия оставалась хранителем духовного наследия Древней Индии. Существенной чертой этого наследия являлось и является придание статуса высшей достоверности внутреннему озарению. Непосредственное внутреннее озарение представляет собой основной источник знания и обладает неоспоримой убедительностью. То, что познано таким образом, считается доказанным. Чтобы убедить в этом другого, надо привести его в такое состояние, чтобы и он мог испытать внутреннее озарение. Поэтому геометрические доказательства выглядели так: чертёж, а под ним подпись «Смотри!».
Примеры таких чертежей с подписями «Смотри!», относящиеся к XII и XVI вв., приведены, например, в монографии [9, с. 76, 154]. Чертёж XIV в. (он воспроизведён также в статье [15, с. 75]), на наш взгляд, достоин того, чтобы излагаться в сегодняшней средней школе: он нагляднее современных доказательств показывает, что площадь круга равна площади прямоугольника, стороны которого суть полуокружность и полудиаметр круга. Поэтому мы приводим этот чертёж здесь (рис. 5).