Представление об убедительности зависит не только от эпохи, но и от социальной среды. К сожалению, я не могу сейчас вспомнить, где читал пассаж на следующую тему. Кардиналы, современники Галилея, были неглупые люди, некоторые из них могли воочию наблюдать горы на Луне в Галилеев телескоп, а также с пониманием следить за логикой рассуждений Галилея. Однако для них их собственные взгляды, основанные на априорной догме, были убедительнее любого эксперимента и любой логики. (Интересный анализ того, как априорно суженное представление о способах доказывания препятствует признанию некоторых фактов, приведён в статье С. П. Божича [13].)
Представление об убедительности того или иного рассуждения зависит от многих факторов. Выявление этих факторов – важная задача логики и психологии. В число таких факторов входит, например, разделение понятий (а точнее, терминов) на осмысленные и бессмысленные. Понятия флогистона и теплорода, считавшиеся осмысленными в XVIII в., признаются сейчас бессмысленными. Эйнштейн открыл, что бессмысленным является и понятие одновременности двух событий – если считать его объективным, не зависящим от наблюдателя (более точно, Эйнштейн открыл, что одновременность не двуместное отношение между двумя событиями, а трёхместное отношение, членами которого являются 1-е событие, 2-е событие и наблюдатель). С другой стороны, такое «очевидно бессмысленное понятие», как бесконечно малое число, вот уже полвека наполняется точным смыслом в рамках так называемого
То, что человеческое знание меняется с ходом истории, разумеется, общее место. Здесь хотелось бы подчеркнуть, что в состав знания входят не только сами факты, но и исходные предпосылки, презумпции, на основании которых тот или иной факт делается членом системы знаний: представления об осмысленности и бессмысленности, об очевидности и неочевидности, о возможном и невозможном, о частном и общем, об убедительности и неубедительности, о доказанном и недоказанном, о достоверном и недостоверном. Все эти представления, хотя, возможно, и меняются медленнее простых представлений о фактах, в сущности, так же исторически относительны, как и последние.
Математика иногда воспринимается как скала, неподвижно возвышающаяся над волнами переменчивых представлений, относящихся к другим наукам. Конечно, основания для такого взгляда на математику имеются. Тем не менее взгляд на математику как на нечто абсолютное, видимо, являет собой преувеличение. Если математика и абсолютна, то только на уровне повседневного опыта – точно так же, как абсолютна ньютоновская физика в применении к явлениям «средних масштабов» (а в очень малом и в очень большом действует уже иная, эйнштейновская физика)[164]
.В частности, социально-историческая обусловленность представлений о «доказательствах вообще» распространяется и на математические доказательства.
Для иллюстрации сказанного автор сейчас попытается изложить вкратце свои представления о понятии доказательства в Древнем Египте, в Древней Греции и в Индии.
У нас не так много достоверных сведений о том, как излагались и воспринимались математические доказательства в древности. Многие из дошедших до нас текстов весьма отрывочны; к тому же встречающиеся в них термины зачастую допускают различную интерпретацию[165]
. Многое приходится домысливать. Каждый домысливает в желательную для себя сторону, и автор этих строк, надо думать, не исключение. С учётом этих оговорок можно составить следующую схему.Представление о доказательстве есть продукт социальной истории общества. Мы отдаём себе отчёт в упрощённости наших исторических подходов, приписывая Древнему Египту централизованную государственность, хотя и там были периоды раздробленности, а Древней Греции – демократию, хотя и там случались тиранические правления. Но любая схема предполагает упрощения.