Какие именно слова следует считать формальными доказательствами – это тема особого разговора, выходящего за круг предметов, которые мы хотели бы здесь обсудить. Подчеркнём, что можно дать различные определения понятию формального доказательства, каждое из которых приводит к своему множеству формальных доказательств. Некоторые общие положения, которым должно подчиняться любое разумное определение, были изложены в предыдущем размышлении. Заметим, впрочем, что иногда делают ещё один шаг в сторону общности и не требуют заранее, чтобы формальными доказательствами обладали только истинные утверждения, полностью отделяя понятие формального доказательства от понятия истины. А затем это отброшенное требование вводят в виде дополнительного свойства (которым формальные доказательства, вообще говоря, могут и не обладать), а именно: множество формальных доказательств называют
Подчеркнём ещё, что формальными доказательствами могут обладать (или не обладать) не сами содержательно понимаемые утверждения, а лишь их записи (т. е. опять-таки слова) в каком-либо точно заданном логико-математическом языке.
Определение понятия формального доказательства – быть может, лучше сказать «определение множества формальных доказательств» – в широких пределах (обусловленных указанными выше общими ограничительными свойствами множества формальных доказательств) произвольно. Здесь имеется в виду тот «юридический» произвол, который отличает математические определения вообще. Мы имеем «юридическое» право, например, произвольно определить класс функций и назвать их «как хотим», например непрерывными.
Другое дело, что всякое разумное математическое определение обычно претендует на то, чтобы соответствовать некоторым интуитивным представлениям, отражать их. Законность определения ещё не означает его разумности. Так, математическое понятие непрерывной кривой отражает (с той или иной точностью) наши интуитивные, содержательные представления о траектории движущейся точки. Аналогично понятие формального доказательства отражает интуитивные представления о содержательном доказательстве.
Можно сказать, что понятие формального доказательства является математической моделью понятия доказательства – в том же смысле, в каком понятие непрерывной кривой является математической моделью понятия траектории.
Остаётся выяснить, что же такое
Итак, термин «доказательство» – один из самых главных в математике – не имеет точного определения. А приблизительное его определение таково:
Восприняв доказательство, мы делаемся в известной степени агрессивными, готовыми убеждать других с помощью этого воспринятого нами рассуждения. Если же мы не готовы, значит, мы ещё не восприняли предъявленного нам рассуждения как доказательства, а если и признали его доказательством, то просто чтобы отмахнуться.
Заметим, что понятия, присутствующие в нашем определении доказательства, – либо логико-лингвистические («рассуждение»), либо психологические («убеждающее», «способны убеждать»). Это полностью отвечает сути дела: само представление о доказательстве неразрывно связано с языковыми средствами и с социальной психологией человека. И то и другое изменяется с ходом истории. Меняется языковое оформление доказательств. Меняется и представление об убедительности.