Имеется некоторый однородный груз, который хранится в нескольких пунктах — в пунктах отправления. Этот груз необходимо перевезти в ряд других пунктов — пунктов получения. Известно, какое количество груза (например, в тоннах) находится в каждом пункте отправления и сколько его необходимо каждому пункту получения. Известны расстояния от каждого пункта отправления до каждого пункта получения. Пункты отправления в дальнейшем пусть называются поставщиками, а пункты получения — потребителями.
Количество груза, находящегося в пункте отправления, обычно называют «мощностью» поставщика. Количество груза, которое необходимо потребителю, — его «спросом». Количество груза, которое перевозится от поставщика к потребителю, называется «поставкой». А полное распределение поставок — «планом поставок». В задаче требуется, естественно, определить план поставок.
Уже в предыдущих примерах показывалось, что в «транспортных задачах» всегда очень много возможных вариантов плана поставок, поэтому надо отыскать оптимальный. И тут-то, естественно, встает вопрос о критерии. Так как работа транспорта характеризуется грузооборотом, который измеряется в тонна-километрах (произведение веса перевезенного груза в тоннах на расстояние в километрах), то в качестве критерия оптимальности можно выбрать объем грузооборота, минимизация которого, очевидно, выгодна народному хозяйству. Это, кажется, достаточный аргумент, чтобы даже наиболее обостренное чувство гражданского долга не испытывало беспокойства. А откуда может появиться беспокойство, если критерий модели основан на том суждении, что он выгоден народному хозяйству?
Дело в том, что основным показателем работы транспортного предприятия является количество тонна-километров. И если работать по оптимальному плану, то при тех же грузах и расстояниях объем грузооборота окажется меньше, и тогда придется искать новых заказчиков на транспорт либо смириться с тем, что предприятие (база) окажется незагруженным и не выполнит плана. Как быть? Ясно, что гораздо спокойнее планировать по-старому: и не надо знать математики, и при тех же грузах грузооборот больше. Кажется, создалась парадоксальная ситуация: план народному хозяйству выгоден, а предприятию невыгоден! Нет, ничего парадоксального здесь нет, просто это один из примеров несогласованности критериев, к сожалению, довольно распространенный в экономике. Уже почти хрестоматийным стал пример про то, что металлургическим предприятиям план задается в тоннах литья, и поэтому всякая рационализация, направленная на снижение веса каждого изделия, «бьет» по плану предприятия и, как правило, встречается в штыки. И тем не менее план по-прежнему задается в тоннах! Понятно, по придумать другой более объективный показатель нелегко, наверняка он будет очень сложным. А утруждаться не хочется! Вот и действуют по принципу: «Лучше простая ошибка, чем сложная истина».
Будем все же следовать гражданскому долгу и ориентироваться на выгоды народного хозяйства, то есть в «транспортной задаче» минимизировать грузооборот. Модель задачи обычно строится в виде таблицы.
Пусть имеется три поставщика и три потребителя. Мощности и спросы указаны в заголовках таблицы 8. На пересечении столбцов и строк в клетках таблицы указаны расстояния между поставщиком и потребителем, например, от поставщика № 2 до потребителя № 1 — 2 километра. Суммарная мощность всех поставщиков равна 200 тоннам, и этому же числу равен суммарный спрос потребителей. Это условие естественное, но вовсе необязательное. Оно упрощает задачу, но для модели несущественно, и дальше будут рассматриваться экономические ситуации, в которых это условие не выполняется.
В чем заключается задача? Требуется составить план поставок, то есть определить, сколько груза везти от каждого поставщика каждому потребителю, чтобы весь груз поставщиков был вывезен, а все спросы потребителей были удовлетворены. Если посмотреть в таблицу, то это означает, что в каждую клетку надо записать число-поставку, причем так, чтобы сумма поставок в строке была равна мощности, а сумма поставок в столбце составляла спрос. Если теперь остановиться на мгновение и посмотреть на таблицу, то задача о перевозке груза почти пропала и осталась математическая головоломка в виде таблицы, которую надо заполнить числами так, чтобы суммы по столбцам и строкам были равны определенным величинам. Вот так осуществляется моделирование: реальные объекты и соотношения заменяются числами и зависимостями между ними.