Данное условие, совместно с другим естественным условием:
Аналогичное соотношение можно составить по обивочным материалам: 40
Поскольку оба неравенства должны выполняться одновременно — на каждый гарнитур необходимо и дерево, и обивочные материалы — обе области надо совместить. Это сделано на рисунке слева. Разберемся, что собой представляет область с двойной штриховкой.
Во-первых, вспомним, что каждая точка на графике — это план производства. Так, точка с координатами
Во-вторых, каждая точка в заштрихованной области первого рисунка — это план, который обеспечен древесиной, каждая точка в заштрихованной области второго рисунка — это план, который обеспечен обивкой. Таким образом, точки области третьего рисунка с двойной штриховкой — это планы производства, обеспеченные и древесиной и обивкой, то есть область допустимых планов. Из них необходимо выбрать оптимальный план, при котором прибыль будет максимальной. Величина прибыли выражается просто. Если выпустить
Так вот — триумфально заключил великий комбинатор — величина прибыли достигает максимума в точке пересечения наклонных границ. На третьем рисунке она обозначена буквой О. Ее координаты легко вычислить, решив совместно уравнения этих прямых. Получим:
«Конгениально…» — прошептал экс-предводитель.
Выражаясь современным языком исследования операций, талантливый сын турецкого подданного для принятия решения о плане производства построил модель «линейного программирования». Неравенства, ограничивающие заштрихованные области на первых двух рисунках, называются ограничениями модели. Формула, выражающая прибыль, называется целевой функцией. А совокупность ограничений и целевой функции — это и есть модель «линейного программирования».
Задача «линейного программирования» («ЛП-задача», как говорят и пишут для сокращения) заключается в том, чтобы найти допустимый план, то есть план, удовлетворяющий ограничениям и который в то же время максимизирует значение целевой функции.
Для решения «ЛП-задачи» вовсе нет необходимости рисовать области допустимых решений и по ним искать точку оптимума. Разработанный стандартный метод, называемый симплексным алгоритмом, позволяет по записанной в специальном виде модели «линейного программирования» («ЛП-модели») отыскать оптимальное решение.
Симплексный алгоритм очень трудоемок, и решение сколь-нибудь значительных «ЛП-задач» возможно только на ЭВМ. В библиотеках стандартных программ современных вычислительных центров, как правило, есть и симплексный алгоритм. Поэтому решение управленческой задачи практически заканчивается после того, как модель построена и получена необходимая для решения информация. Дальше следует чисто техническая работа: вызов программы симплексного алгоритма и работа ее на ЭВМ.
Широкая область применения «ЛП-модели» объясняется в первую очередь вычислительными удобствами. Но главная причина их распространенности кроется в другом: в них заложено решение широко распространенной задачи планирования — задачи о балансировке ресурсов. Возникает она вот почему.