Как Кеплер измерил площадь эллиптического сектора, учитывая, что у него одна изогнутая сторона? Он поступил так же, как и Архимед – разрезал сектор на много тонких ломтиков и аппроксимировал их треугольниками. Затем вычислил их площадь (это просто, потому что у них прямые стороны) и сложил их, чтобы оценить площадь исходного сектора. По сути, он применил архимедову версию интегрального исчисления к реальным данным.
Третий закон Кеплера и священный экстаз
Законы, которые мы обсуждали до сих пор – каждая планета движется по эллипсу с фокусом в Солнце, а ее радиус заметает равные площади за равные промежутки времени, – относятся к каждой планете в отдельности. Кеплер открыл их оба в 1609 году. Но ему потребовалось еще десять лет, чтобы открыть третий, «коллективный» закон, связывающий всю Солнечную систему единой нумерологической закономерностью. Он стал результатом многих месяцев яростных вычислений и появился спустя двадцать лет после мучительного промаха с платоновыми телами. В своем предисловии к «Гармонии мира» (1619) Кеплер в экстатическом восторге писал, что наконец-то увидел план Бога: «Ныне, после того как 18 месяцев назад впервые забрезжил рассвет, после того как 3 месяца назад наступил ясный день и лишь несколько дней назад взошло яркое солнце чудеснейшего зрелища, ничто не может остановить меня. Я отдаюсь священному экстазу. Не боясь насмешек смертных, я исповедуюсь открыто»[141]
.Числовой закономерностью, так очаровавшей Кеплера, стало открытие, что квадрат периода обращения планеты пропорционален кубу ее среднего расстояния от Солнца. Иными словами, отношение
Суть третьего закона проста: чем дальше планета от Солнца, тем медленнее она движется и тем больше время ее оборота. Однако интересно то, что период обращения не пропорционален просто расстоянию. Например, период обращения нашей ближайшей соседки Венеры равен 61,5 % от нашего года, но среднее расстояние от Солнца у нее – 72,3 % от земного, а не 61,5 %, как можно было бы наивно полагать. А все потому, что период
Если
Кеплер и Галилей никогда не встречались, но они переписывались, обсуждали свои коперниканские взгляды и открытия, сделанные в астрономии. Когда некоторые люди отказывались смотреть в телескоп Галилея, опасаясь, что это инструмент дьявола, ученый написал Кеплеру: «Мой дорогой Кеплер, хотел бы я, чтобы мы посмеялись над необычайной глупостью толпы. Что бы вы сказали о выдающихся философах этого университета, которые со ослиным упорством, несмотря на мои тысячекратные приглашения, отказывались смотреть на планеты или на Луну в мой телескоп?»[142]
В чем-то Кеплер и Галилей были похожи. Оба интересовались движением. Оба работали в области интегрального исчисления: Кеплер – над объемами криволинейных тел (например, винных бочек), Галилей – над центрами тяжести параболоидов. При этом они следовали духу Архимеда, разрезая в уме твердые тела на множество тоненьких слоев, похожих на ломтики салями.
Но в остальном они дополняли друг друга. Особенно это проявлялось в научных открытиях: Галилей занимался законами движения на Земле, а Кеплер – в Солнечной системе. Однако взаимодополняемость проникает еще глубже, вплоть до научного стиля и склонностей. Галилей был рациональным человеком, Кеплер – мистиком.
Галилей был интеллектуальным потомком Архимеда, очарованным механикой. В своей первой публикации он правдоподобно изложил легенду «Эврика!», показав, как Архимед с помощью ванны и весов смог определить, что корона правителя Гиерона сделана не из чистого золота, и вычислить точное количество серебра, которое подмешал в нее вороватый ювелир. Галилей продолжал развивать работы Архимеда на протяжении всей жизни, часто расширяя его механику – от равновесия к движению.