Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

На диаграмме представлена некая обобщенная функция y(x). Я не уточнял, что означают y или x, потому что это не имеет значения. Картинка отражает обобщенность – она просто изображает некоторую кривую на плоскости. Эта кривая может представлять любую функцию одной переменной, и поэтому ее можно применять в любой области математики, где используются такие функции, то есть фактически везде. Значимость наклона и площади я объясню позже. Сейчас же думайте о них так, как есть: это наклон и площадь, то есть те вещи, которые интересуют геометров.

Мы можем рассматривать эту кривую двумя способами – старым и новым. В начале XVII века, до появления анализа, такие кривые считались геометрическими объектами, интересными сами по себе. Математики стремились количественно выразить их геометрические характеристики. Получив какую-то кривую, они хотели иметь возможность вычислять угол наклона касательной в каждой точке, длину дуги кривой, площадь под кривой и так далее. В XXI веке нас больше интересует функция, которая создала эту кривую, – функция, моделирующая какое-то природное явление или технологический процесс, в итоге отраженные в этой кривой. Кривая – это данные, но в их основе лежит нечто более глубокое. Сегодня мы думаем о кривой как о следах на песке, как о намеках на какой-то процесс, ее породивший. Мы интересуемся именно этим процессом (который моделируется функцией), а не следами, которые он после себя оставил.

Столкновение этих двух точек зрения – это столкновение загадки кривых и загадки движения и изменения. Именно так античная геометрия столкнулась с современной наукой. Хотя мы живем в нынешние времена, я предпочел рисовать картину исходя из старой точки зрения, потому что координатная плоскость прекрасно нам знакома. Она предлагает самый понятный способ восприятия трех центральных задач анализа, поскольку все они могут быть легко и наглядно представлены в геометрических терминах. (Те же идеи можно переформулировать в терминах движения и изменений с помощью динамических идей, например, используя скорость и расстояние вместо кривых и наклонов, однако мы сделаем это позже, когда лучше разберемся в геометрии.)

Эти вопросы следует интерпретировать в смысле функций. Иными словами, когда я говорю о наклоне кривой, я не имею в виду наклон в одной конкретной точке, а подразумеваю произвольную точку x. Наклон меняется, когда мы движемся вдоль кривой. Наша цель – понять, как он меняется в зависимости от точки x. Аналогично площадь под кривой также зависит от точки x

. Я закрасил ее серым и обозначил x. Эту площадь также следует рассматривать как функцию от A(x). По мере увеличения x вертикальная пунктирная линия сдвигается вправо и площадь увеличивается. Поэтому она зависит от выбранного значения
x.

Таковы три главные задачи. Как можно узнать меняющийся наклон кривой? Как мы можем восстановить кривую по известному наклону? И как вычислить переменную площадь под кривой?

В контексте геометрии эти задачи могут показаться довольно сухими. Но как только мы взглянем на них с точки зрения XXI века как на задачи реального мира, движения и изменения, они приобретают феноменальный масштаб. Наклоны измеряют скорость изменений, площади – накопление изменений. Наклоны и площади возникают в любой области – физике, инженерии, финансах, медицине, словом, везде, где к ним есть интерес. Понимание этих задач и их решений открывает вселенную современного количественного мышления, по крайней мере в отношении функций одной переменной. Для полной ясности я должен упомянуть, что анализ включает гораздо больше: функции многих переменных, дифференциальные уравнения и тому подобное. Но всему свое время. Мы вернемся к ним позже.

В этой главе рассматриваются функции одной переменной и их производные (скорости их изменений); мы начнем с функций, которые меняются с постоянной скоростью, а затем перейдем к более сложным функциям, меняющимся с переменной скоростью. Именно тут дифференциальное исчисление показывает себя во всей красе – оно придает смысл постоянным изменениям.

Освоившись со скоростью изменений, мы будем готовы заняться их накоплением, более сложной темой следующей главы. Там будет установлено, что прямая и обратная задачи, какими бы разными они ни казались, – это разлученные при рождении близнецы, и этот потрясающий результат называется основной теоремой анализа

. Она показывает, что скорость изменений и их накопление связаны гораздо теснее, чем можно было подозревать, – открытие, которое объединило обе части анализа.

Однако начнем со скоростей изменений.

Линейные функции и их постоянные скорости изменения

Многие повседневные ситуации можно описать линейной зависимостью – когда одна переменная пропорциональна другой. Например:


1. Прошлым летом моя старшая дочь Лия получила свою первую работу в магазине одежды. Она зарабатывала 10 долларов в час, поэтому за два часа ей платили 20 долларов. В общем случае, когда она работала t часов, она зарабатывала 10t долларов.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература