И Ньютон, и Лейбниц пользовались бесконечно малыми величинами, но в то время как Ньютон впоследствии отказался от них в пользу флюксий (которые представляют собой отношение бесконечно малых первого порядка и поэтому конечны и респектабельны, как, собственно, производные), у Лейбница был более прагматичный взгляд[237]
. Он не беспокоился о том, существуют ли они на самом деле. Он считал их полезным и эффективным способом переформулировать рассуждения о пределах. Он также рассматривал их как удобные бухгалтерские средства, которые высвобождают воображение для более продуктивной работы. Как он объяснял одному коллеге: «С философской точки зрения я верю в бесконечно малые числа не больше, чем в бесконечно большие. Я рассматриваю те и другие как измышления разума, предназначенные для сжатого изложения, пригодного для анализа»[238].А что сегодня по этому поводу думают математики? Существуют ли
Чтобы посмотреть, насколько поучительными могут быть бесконечно малые, давайте возьмем конкретный пример. Рассмотрим арифметическую задачу. Сколько будет 2 в кубе (то есть 2×2×2)? Естественно, 8. А как насчет 2,001×2,001×2,001? Понятно, что чуть больше 8, но насколько именно?
То, что мы сейчас ищем, – это способ мышления, а не численный ответ. Общий вопрос таков: если мы незначительно меняем в задаче входное число (в данном случае с 2 на 2,001), то как оно изменится на выходе? В данном случае с 8 на 8 плюс нечто, и структуру этого нечто мы и хотим понять.
Поскольку совладать с искушением подглядеть ответ нелегко, давайте посмотрим, что нам скажет калькулятор. Набираем 2,001, нажимаем кнопку
(2,001)3
= 8,012006001.Структура числа после десятичной запятой такова:
0,012006001 = 0,012 + 0,000006 + 0,000000001.
Подумайте об этом так: малое плюс сверхмалое плюс сверхсверхмалое.
Мы можем пояснить такую конструкцию с помощью алгебры. Предположим, что величина
(
В нашей задаче, где
(2 + Δ
Теперь мы видим, почему добавка к 8 состоит из трех частей различной величины. Малая, но главная часть равна 12Δ
В этом небольшом примере хорошо видна ключевая идея дифференциального исчисления. Во многих ситуациях, касающихся причины и следствия, дозы и реакции, входа и выхода, а также иной взаимосвязи между переменной