Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Единственное, что нехорошо с бесконечно малыми величинами, – это то, что они не существуют, по крайней мере в системе действительных чисел. Да, и еще одно – они парадоксальны. Они не казались бы осмысленными, даже если бы существовали. Один из последователей Лейбница, Иоганн Бернулли, понял, что они обязаны удовлетворять бессмысленным уравнениям вроде x + dx = x, хотя dx – это не ноль. Хм. Ну нельзя же получить все сразу! Бесконечно малые величины действительно дают правильные ответы, как только мы научимся с ними работать, а предоставляемые ими выгоды с лихвой компенсируют все психические расстройства, которые они могут вызывать. Они подобны лжи Пикассо, которая помогает нам осознать истину.

В качестве еще одной демонстрации мощи бесконечно малых величин Лейбниц использовал их для вывода закона синусов для преломления света, предложенного Снеллом. Вспомните главу 4: когда свет переходит из одной среды в другую (скажем, из воздуха в воду), он изгибается в соответствии с математическим законом, который не раз был установлен в течение столетий. Ферма объяснил его своим принципом наименьшего времени, но изо всех сил пытался решить задачу оптимизации, которую подразумевал его принцип. С помощью своих дифференциалов Лейбниц с легкостью вывел закон синусов[242] и с явной гордостью отметил, что «другие весьма ученые мужи искали многими хитроумными способами то, что человек, сведущий в этом анализе, может достичь в этих строках, как по волшебству»[243].


Основная теорема анализа через дифференциалы

Еще одним триумфом дифференциалов Лейбница стало то, что они сделали основную теорему прозрачной. Вспомним, что она относится к функции накопления площади A(x), которая определяет площадь под кривой y = f(

x) в интервале от 0 до x. Теорема гласит, что при сдвиге x вправо площадь под кривой накапливается со скоростью самой f(x). Таким образом, f(x) является производной A(x).



Чтобы понять, откуда берется этот результат, предположим, что мы увеличиваем x на бесконечно малую величину dx. Как изменится площадь A

(x)? По определению, она изменится на величину dA, то есть новая площадь равна старой плюс ее приращение, A + dA.

Основная теорема получается сразу же, как только мы наглядно представим, чему должно равняться dA. Как видно из рисунка ниже, площадь изменяется на бесконечно малую величину dA, которая представляет собой узкую вертикальную полоску между x и x + dx.



Эта полоска – прямоугольник с высотой y и основанием dx. Поэтому его площадь равна произведению этих величин, то есть

y dx или, если угодно, f(x)dx.

В действительности такая полоска будет прямоугольником только при бесконечно малом приращении. В реальности для полоски конечной ширины Δx изменение площади ΔA будет состоять из двух частей. Основной вклад внесет прямоугольник площади yΔx. Намного меньше по площади маленький, криволинейный сверху, похожий на треугольник кусочек, располагающийся над этим прямоугольником.



Вот еще один случай, когда мир бесконечно малых величин приятнее реального. В реальном мире нам пришлось бы учитывать площадь этой крышечки, а это сделать непросто, поскольку она зависит от формы кривой. Но когда ширина прямоугольника стремится к нулю и «становится» dx, площадь крышечки оказывается пренебрежимо малой по сравнению с площадью прямоугольника. Это сверхмалая величина по сравнению с малой величиной.

В результате получается, что dA = y dx = f

(x)dx. Бум! И вот вам основная теорема анализа. Или, как это более вежливо переформулируют в нынешние дни (в наше заблудшее время, когда дифференциалы отвергнуты ради производных),



Это в точности то, что мы установили в главе 7 с помощью примера с малярным валиком.

И последнее: когда мы рассматриваем площадь под кривой как сумму бесконечного числа бесконечно узких прямоугольных полосок, то записываем это как[244]



Этот символ с длинной шеей, похожий на лебедя – фактически растянутая буква S, которая напоминает нам, что здесь происходит суммирование[245]. Это суммирование определенного рода, характерное для интегрального исчисления, подразумевающее сумму бесконечного количества бесконечно узких полосок, объединенных в единую связную область. Символ называется знаком интеграла. Лейбниц ввел его в рукописи 1677 года и опубликовал в 1686-м. Это самый узнаваемый символ математического анализа. Число 0 под этим знаком и величина x над ним указывают на конечные точки интервала на оси x, над которым выстроены прямоугольники. Эти точки называются пределами интегрирования.


Как Лейбниц пришел к дифференциалам и основной теореме?

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература