Теперь давайте попробуем выполнить другие измерения. Все еще держа черный щуп на отрицательном полюсе батарейки, приложим красный щуп к положительному выводу светодиода. Мы должны получить около 2 В, то есть падение напряжения на концах светодиода. Попробуем приложить щупы к двум выводам резистора. В этом случае на приборе будет считываться падение напряжения на резисторе, которое составит около 7 В.
Рис. 1.28.
Исследуем цепь с помощью тестера, измеряя напряжения в точках А, В и СИзмерение тока
Измерение тока является более сложной операцией, так как необходимо разорвать цепь для подключения щупов измеряющего прибора. Мы выяснили, что ток сравним с потоком воды в трубопроводе. Чтобы измерить его, надо обязательно открыть трубу и подключить наш измерительный прибор, который работает как своего рода счетчик воды, обнуляясь каждую секунду и сообщая количество прошедшей воды. Для измерения тока подключите черный щуп в гнездо СОМ и красный щуп в гнездо для тока. Будьте внимательны, некоторые приборы имеют два гнезда для тока, одно для малых токов (отмечен как «мА») и другое для больших; последнее, как правило, четко обозначено. В нашем случае мы должны использовать гнездо для малых токов. Переключатель тестера устанавливается на соответствующее поле: будьте внимательны, так как и для токов важно разделение переменного и постоянного тока.
Рис. 1.29.
Для измерения тока щупы подключаются в гнезда СОМ и А или ADC. Переключатель значений поворачивается на поле А или ADCИзмерим ток, текущий в цепи на рис. 1.23. В соответствии с выполненными нами измерениями было выяснено, что для тока мы должны найти значение между 10 и 20 мА. Для измерения тока, протекающего в проводе, вы должны разорвать цепь и подключить тестер. Наша цепь представляет собой простое кольцо, которое мы можем разорвать в любой точке:
1. включаем тестер;
2. подключаем черный щуп в гнездо СОМ;
3. устанавливаем переключатель для измерения тока, вращаем переключатель в поле ADC на значение, превышающее 20 мА (например, на моем тестере я установил 200 мА);
4. подключаем красный щуп в гнездо А;
5. отсоединяем провод от положительного полюса батарейки;
6. прикладываем черный щуп к положительному полюсу батарейки;
7. прикладываем красный щуп к проводу, отсоединенному от батарейки;
8. проверяем измеренный ток на дисплее.
Рис. 1.30.
Для измерения тока в цепи со светодиодом и батарейкой необходимо разорвать цепь и подключить мультиметр; таким образом ток будет проходить через приборПравда о воде и токе
На этом этапе необходимо сделать уточнение в метафоре о воде. Представляя, что электрический ток подобен воде, протекающей в трубе, мы таким образом упрощаем понимание и представление о токе. К сожалению, эта модель имеет свои недостатки. Посмотрите на рисунок:
Рис. 1.31.
Что изменится, если подключить сопротивление перед или после светодиода?В первом случае мы имеем батарейку, соединенную сначала с резистором, а затем со светодиодом. Если бы ток вел себя подобно воде, он бы вышел из положительного полюса и пришел к сопротивлению. Оно уменьшает ток, который достигает светодиода, таким образом, светодиод включится и не сгорит. Во втором случае ток сначала встретится со светодиодом, а уже потом с сопротивлением. Используя метафору воды, мы будем вынуждены сказать, что электрический ток будет уменьшен только после того, как пройдет через светодиод. Сгорит ли светодиод? В действительности, с точки зрения тока, эти два случая эквивалентны. В обеих цепях ток будет иметь одинаковое значение. Используя батарейку 9 В, сопротивление в 470 Ом и зная, что светодиоду необходимо напряжение 2 В для включения, получаем:
Математические формулы не учитывают тот факт, что сопротивление расположено до или после светодиода, они просто рассматривают цепь, в которой течет ток.
В действительности реальный ток ведет себя не как «текущий» элемент, но скорее как элемент, «занимающий пространство». В этом случае «пространство» представляет собой контур цепи. Это как если бы ток рассматривал сначала «препятствия» на своем пути.
В большинстве книг по электронике первый элемент, с которым мы сталкиваемся, это атом, образованный множеством небольших сфер и используемый для объяснения того, чем являются электроны и как они дают основу для электрического тока. Даже это объяснение, в котором электроны изображаются в виде шаров, является неудачным, потому что в конце концов приводит нас к недостаткам теории с водой.
Современная физика обнаружила, что электроны не имеют форму шара! Говорится о частицах, но в действительности мы имеем поля и волны, аргументы становятся очень сложными, так как приходится сталкиваться с рядом вторичных явлений, которые в большинстве случаев незначительны, но в определенных условиях, иногда даже не столь экстремальных, должны быть учтены.