Числа суть непосредственно и сначала совершенно неопределенно числа вообще; они поэтому вообще неравны; сочетание или счисление таких чисел есть сложение.
Ближайшее за этим определение чисел состоит в том, что числа вообще равны, они, следовательно, составляют одно единство, и имеется определенное множество таких чисел: счисление таких чисел есть умножение, причем безразлично, как распределяются между обоими числами, между множителями, определенное множество и единство, какой из них принимается за определенное множество и какой — за единство.
Третью определенность представляет собой, наконец, равенство определенного множеста и единства. Сочетание определенных так чисел есть возведение в степень и, ближайпшм образом, возведение в квадрат. Дальнейшее возведение в степень есть формальное продолжение умножения числа на само себя неопределенное количество раз. Так как в этом третьем определении достигнуто полнейшее равенство единственного имеющегося различия, определенного множества и единства, то не может быть больше арифметических действий, чем эти три. Сочетанию чисел соответствует разложение чисел согласно тем же определенностям. Поэтому наряду с тремя указанными действиями, которые постольку могут быть названы положительными, существуют таксе и три отрицательных действия.
Прибавление. Так как число есть вообще определенное количество в его полной определенности, то мы пользуемся им не только для определения так называемых дискретных величин, но также и для так называемых непрерывных величин. Приходится, поэтому, также и в геометрии прибегать к помощи числа в тех случаях, в которых дело идет об указании определенных пространственных конфигураций и их отношений.
с. Степень.
Граница тожественна с целым самого определенного количества; как многообразное внутри себя, она есть экстенсивная величина, но как внутри себя простая определенность, она есть интенсивная величина, или степень.
Примечание. Отличие непрерывных и дискретных величин от экстенсивных и интенсивных состоит в том, что первое различение относится к количеству вообще, а второе — к границе или определенности количества, как таковой. Экстенсивные и интенсивные величины также не суть два особых вида, каждый из которых содержит в себе определенность, которой нет в другом. То, что есть экстенсивная величина, есть столь же и интенсивная величина, и наоборот.