В 1900 году Гильберт включил доказательство непротиворечивости аксиом арифметики вторым пунктом в свой знаменитый список нерешенных (на тот момент) проблем. В 1931 году Гёдель своими теоремами, казалось бы, лишил математиков надежды, что эта проблема когда-нибудь будет решена. Но всего несколько лет спустя, в 1936-м, немецкий математик и логик Герхард Генцен, ассистент Гильберта в Гёттингенском университете в 1935–1939 годах, опубликовал статью, в которой доказал непротиворечивость арифметики Пеано – то есть пришел к заключению, вроде бы диаметрально противоположному выводу Гёделя. Однако, в отличие от Гёделя, Генцен не пытался доказать непротиворечивость системы Пеано средствами самой этой системы. Вместо этого он прибег к помощи ординалов с определенными свойствами, в частности одного очень большого ординала (c ним мы уже встречались в десятой главе), названного Кантором “эпсилон-ноль” (
Методику Генцена можно расширить и применять для доказательства непротиворечивости многих других систем, при условии что удастся построить достаточно большой ординал. Более того, как выяснилось, всякая математическая система характеризуется определенной “силой”, числом, которое показывает, какие ординалы могут быть выражены в этой системе, а какие нет. Например, так называемый теоретико-доказательственный ординал арифметики Пеано равен
Математики все еще расходятся во мнениях относительно второй проблемы Гильберта: возможно ли доказать, что арифметика непротиворечива? Одни разделяют вывод Гёделя и считают, что это невозможно в принципе, другие склоняются к точке зрения Генцена, предложившего частичное доказательство. Как бы то ни было, этот вопрос не затрагивает сути теорем Гёделя: что
Прошло три десятка лет после публикации в начале 1930-х годов теорем о неполноте, а примеров неразрешимых утверждений у математиков было раз-два и обчелся, не считая слишком уж искусственных, вроде тех, что сам Гёдель использовал в своем доказательстве. А затем произошел настоящий прорыв, и причиной его стало предположение, тревожившее умы математиков с того самого момента, как его в 1873 году выдвинул Георг Кантор. Это предположение – континуум-гипотеза, с которой мы уже встречались в десятой главе. Она гласит, что число алеф-один (ﬡ1
) – мощность множества всех счетных ординалов – равно также мощности множества всех действительных чисел; другими словами, что действительных чисел (или точек на линии) столько же, сколько счетных ординалов. Если континуум-гипотеза истинна, значит, не существует множества, которое по мощности занимало бы промежуточное положение между множествами целых чисел и действительных чисел. Сам Кантор не сумел доказать это предположение, хоть и бился над ним бо́льшую часть жизни, чем, возможно, и подорвал свое психическое здоровье. Гильберт придавал континуум-гипотезе такое большое значение, что поставил ее на первое место в своем списке двадцати трех важнейших проблем. Лишь в 1963 году благодаря работе американского математика Пола Коэна был прояснен – если не окончательно определен – статус континуум-гипотезы. Коэн доказал, что в рамках ZFC (а они не так уж тесны!), самой широко используемой аксиоматической системы в современной математике, континуум-гипотеза неразрешима. Он обнаружил, что возможно сконструировать два различных набора аксиом, каждый из которых будет включать в себя все аксиомы ZFC и обладать внутренней непротиворечивостью, таких, что в одном из них континуум-гипотеза будет истинна, а в другом – ложна. Проще говоря, средствами системы ZFC континуум-гипотезу можно как доказать, так и опровергнуть – все зависит от того, какие дополнительные правила мы применим. Если же использовать ZFC в чистом виде, без дополнительных аксиом, невозможно ни то ни другое.