Родоначальниками теории множеств были (и это не случайно) те же ученые, что стояли у истоков математики бесконечного: немцы Георг Кантор и Рихард Дедекинд, с которыми мы уже встречались в десятой главе. Теория множеств возникла потому, что она способна оперировать как конечными, так и бесконечными числами. Кроме того, в точном соответствии со своим названием она дает математикам теоретическую основу для работы с множествами – наборами объектов, будь то числа, буквы алфавита, планеты, жители Парижа, множества множеств или любые другие, какие только можно выдумать. В мире математики любой волен выбирать, какой набор аксиом положить в основу одного из многочисленных возможных вариантов теории множеств. Так уж сложилось, что система, которой математики сегодня пользуются чаще всего, поскольку она хорошо работает в большинстве ситуаций, – это теория множеств Цермело – Френкеля. К ней добавляют еще одну специальную аксиому, известную как аксиома выбора, и все вместе называют “системой ZFC”[58]
. Многие из аксиом ZFC очевидны и не требуют разъяснений: “Два множества, содержащие одни и те же элементы, идентичны” и подобные. А вот аксиома выбора оказалась орешком покрепче. Ее даже провозгласили самой спорной аксиомой со времен евклидова постулата о параллельности.Упрощая, сформулируем аксиому выбора так: если дан любой набор множеств, всегда возможно выбрать из каждого ровно по одному неповторяющемуся элементу и составить из них новое множество. В повседневных ситуациях это кажется очевидным: например, можно выбрать по одному человеку из каждой страны мира и собрать их в одном помещении. Проблема в том, что не совсем понятно, как это осуществить, если число множеств бесконечно и сами они имеют бесконечный размер. В таком случае сделать необходимый выбор может быть просто невозможно, и тогда аксиома выбора начинает больше походить на произвольно навязанное правило, чем на утверждение, с которым все могут согласиться. И все же, несмотря на это, большинство математиков сегодня охотно принимают аксиому выбора, поскольку она необходима им для доказательства множества важных теорем. Порой ее применение приводит к результатам, кажущимся на первый взгляд совершенно невероятными. Один из них: парадокс Банаха – Тарского, он же парадокс удвоения шара, который мы уже обсуждали в девятой главе и согласно которому шар можно разрезать на конечное число частей, а затем собрать из них две копии того же шара, удвоив таким образом исходный объем. Под “разрезанием” здесь подразумевается абстрактное, математическое разбиение, невозможное в реальном мире. И все равно это больше похоже на колдовство, чем на математику. Тем не менее, если применять аксиому выбора, промежуточные части разрезанного шара можно считать не сплошными кусочками, а своего рода разрозненными “облачками”, не имеющими определенного объема, так что при их сборке легко получить объем, в два раза (или хоть в миллион) превышающий начальный.
Раз математики вольны сами выбирать для себя наборы аксиом, которые им больше нравятся и лучше отвечают поставленным целям, то, казалось бы, ничто не мешает им в конце концов составить такую систему аксиом, что позволит доказать