В 1931 году, за несколько лет до отъезда Гёделя из Австрии и начала работы в Институте перспективных исследований в Принстоне, где он подружился с Альбертом Эйнштейном, им были опубликованы две сенсационные, шокирующие теоремы – первая и вторая теоремы о неполноте. Если в двух словах, первая из них гласит, что любая математическая система, достаточно сложная, чтобы включать в себя обычную – школьную – арифметику, не может быть одновременно и полной, и непротиворечивой. Полная система – это такая, в которой все, что в нее входит, можно доказать или опровергнуть. Непротиворечивая – значит не содержащая таких утверждений, которые могут быть одновременно и доказаны, и опровергнуты. Как гром среди ясного неба, теоремы Гёделя о неполноте показывали, что в любой математической системе (за исключением самых простых) всегда найдутся утверждения истинные, но недоказуемые. Теоремы о неполноте в каком-то смысле аналогичны принципу неопределенности в физике, поскольку также указывают на существование фундаментального предела познания. И, как и принцип неопределенности, они раздражают и подавляют нас, дразня тем, что реальность – в том числе чисто интеллектуальная – самим своим поведением препятствует полному познанию того, что мы пытаемся постичь разумом. Грубо говоря, они показывают, что истина сильнее доказательства – а это ненавистно, особенно для математика.
Работа Гёделя и его поразительные выводы стали возможны только после того, как математики и логики признали необходимость формализовать математические системы с помощью четко сформулированных наборов аксиом. Путь в этом направлении был указан еще в античные времена Евклидом. Но только во второй половине XIX века, с разработкой теории множеств и математической логики, процесс формализации приобрел необходимую строгость и появилась возможность распространить его на
В качестве примера он взял одно из утверждений об арифметике Пеано, которое невозможно было ни доказать, ни опровергнуть средствами самой этой арифметической системы. Он показал, что если это утверждение доказуемо, то оно ложно (а значит, может быть опровергнуто), а если оно может быть опровергнуто, то может быть и доказано. В любом из этих случаев арифметика Пеано, если она полна, оказывается противоречивой. Мы вправе попробовать пойти на уступки: хорошо, пусть система неполна, но ведь должен же быть способ доказать, что арифметика Пеано (или любая другая система) непротиворечива. Увы, вторая теорема Гёделя о неполноте разбивает и эту последнюю надежду, демонстрируя, что любое доказательство непротиворечивости системы (средствами самой этой системы) автоматически доказывает и обратное – что она противоречива. Не все математики, правда, убеждены, что в вопросе непротиворечивости за Гёделем последнее слово.