Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

Предположим, что имеется некоторая плоскость, которую за­полняют осцилляторы, причем все они колеблются в плоскости одновременно, с одной амплитудой и фазой. Чему равно поле на конечном, но достаточно большом расстоянии от плоскости? (Мы не можем выбрать точку наблюдения очень близко от плос­кости, потому что у нас нет точных формул для поля вблизи источников.) Пусть плоскость зарядов совпадает с плоскостью XY и нас интересует поле в точке Р, лежащей на оси z, достаточ­но далеко от плоскости (фиг. 30.10). Предположим, что число зарядов на единичной площадке равно n, а величина каждого заряда д. Все заряды совершают одинаковые гармонические колебания в одном и том же направлении, с той же амплитудой и фазой. Смещение заряда из его среднего положения описы­вается функцией x0coswt. Вводя комплексную амплитуду, действительная часть которой дает реальное движение, будем описывать колебание заряда функцией x0eiwt.


Чтобы найти поле, создаваемое всеми зарядами в точке Р, нужно вычислить сначала поле отдельного заряда q, а затем сложить поля всех зарядов. Как известно, поле излучения про­порционально ускорению заряда, т. е.. — w2x0еiw

t (и одинаково для всех зарядов). Электрическое поле в точке Р, создаваемое зарядом в точке Q, пропорционально ускорению заряда q, нужно только помнить, что поле в точке Р в момент времени t определяется ускорением заряда в более ранний момент времени t' =t-r/c, где r/c — время, за которое волна проходит расстояние от Q до Р. Поэтому поле в точке Рпропорционально

(30.10)

Фиг. 30.10. Поле излучения ос­циллирующих зарядов, заполняю­щих плоскость.


Подставляя это значение ускорения в формулу для поля, соз­даваемого зарядом на большом расстоянии, получаем


Однако эта формула не совсем правильна, поскольку нужно брать не все ускорение целиком, а его компоненту, перпендику­лярную линии QP. Мы предположим, однако, что точка Рнахо­дится от плоскости намного дальше, чем точка Qот оси z

(рас­стояние r на фиг. 30.10), так что для эффектов, которые мы хо­тим учесть, косинус можно заменить единицей (косинус и так довольно близок к единице).

Полное поле в точке Р получается суммированием вкладов от всех зарядов в плоскости. Разумеется, мы должны взять векторную сумму полей. Но поскольку направление поля при­мерно одинаково для всех зарядов, в рамках сделанного прибли­жения достаточно сложить величины всех полей. Кроме того, в нашем приближении поле в точке Рзависит только от r, сле­довательно, все заряды с одинаковым rсоздают равные поля. Поэтому, прежде всего, сложим поля всех зарядов в кольце ши­риной dr и радиусом r. Интегрируя затем по всем r, получаем полное поле всех зарядов.


Число зарядов в кольце равно произведению площади кольца, 2nrdr, на h— плотность зарядов на единицу площади. Отсюда


Интеграл берется в пределах r=0 и r=Ґ. Время t, конечно, зафиксировано, так что единственными меняющимися величинами являются r и r. Отвлечемся пока от постоянных множителей, включая и ei

wt, и вычислим интеграл

(30.13)

Для этого учтем соотношение между r и r:

(30.14)

При дифференцировании формулы (30.14) z нужно считать независимым от r, тогда

2rdr = 2rdr,

что очень кстати, поскольку при замене в интеграле rdr на rdr знаменатель r сокращается. Интеграл приобретает более простой вид

(30.15)

. Экспонента интегрируется очень просто. Нужно поставить в знаменатель коэффициент при rв показателе экспоненты и взять саму экспоненту в точках, соответствующих пределам. Но пределы по rотличаются от пределов по р. Когда r=0, нижний предел r=z, т. е. пределы по r равны z и бесконечности. Ин­теграл (30.15) равен


(30.16)

Вместо (r/с)Ґ мы здесь написали Ґ, поскольку и то и другое означает просто сколь угодно большую величину!

А вот е-iҐ— величина загадочная. Ее действительная часть, равная cos (-Ґ), с математической точки зрения величина со­вершенно неопределенная. [Хотя можно допустить, что она на­ходится где-то [а может быть и всюду (?)—между +1 и -1!]Но в физической ситуации эта величина может означать нечто вполне разумное и обычно оказывается равной нулю. Чтобы убедиться, что это так в нашем случае, вернемся к первоначальному инте­гралу (30.15)

Выражение (30.15) можно понимать как сумму большого числа маленьких комплексных чисел, модуль которых ar, a угол в комплексной плоскости q=-wr/с. Попробуем оценить эту сумму графически. На фиг. 30.11 отложены первые пять членов суммы. Каждый отрезок кривой имеет длину Dr и рас­положен под углом Dq =-w(Dr/с) к предыдущему отрезку. Сум­ма первых пяти слагаемых обозначена стрелкой из начальной точки к концу пятого отрезка. Продолжая прибавлять отрезки, мы опишем многоугольник, вернемся примерно к начальной точке и начнем описывать новый многоугольник. Чем большее число отрезков мы будем прибавлять, тем большее число раз мы обернемся, двигаясь почти по окружности с радиусом с/w. Теперь понятно, почему интеграл дает при вычислении неопре­деленный ответ!

Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги