Попробуем понять это явление на очень простом примере. Пусть источник (назовем его «внешним источником») помещен на большом расстоянии от тонкой прозрачной пластинки, скажем стеклянной. Нас интересует поле по другую сторону пластинки и достаточно далеко от нее. Все это схематично представлено на фиг. 31.1; точки S и Р здесь предполагаются удаленными на большое расстояние от плоскости. Согласно сформулированным нами принципам, электрическое поле вдали от пластинки представляется (векторной) суммой полей внешнего источника (в точке S) и полей всех зарядов в стеклянной пластинке, причем каждое поле берется с запаздыванием при скорости с. Напомним, что поле каждого заряда не меняется от присутствия других зарядов. Это наши основные принципы. Таким образом, поле в точке Р
может быть записано в виде
(31.1)
(31.2)
где Es
— поле внешнего источника; оно совпадало бы с искомым полем в точке Р, если бы не было пластинки. Мы ожидаем, что в присутствии любых движущихся зарядов поле в точке Р будет отлично от ErОткуда берутся движущиеся заряды в стекле? Известно, что любой предмет состоит из атомов, содержащих электроны. Электрическое поле внешнего источника действует на эти атомы и раскачивает электроны взад и вперед. Электроны в свою очередь создают поле; их можно рассматривать как новые излучатели. Новые излучатели связаны с источником S, поскольку именно поле источника заставляет их колебаться. Полное поле содержит вклад не только от источника S, но и дополнительные вклады от излучения всех движущихся зарядов. Это значит, что поле в присутствии стекла изменяется, причем таким образом, что внутри стекла его скорость распространения кажется иной. Именно эту идею мы используем при количественном рассмотрении.
Однако точный расчет очень сложен, потому что наше утверждение, что заряды испытывают только действие источника, не совсем правильно. Каждый данный заряд «чувствует» не только источник, но, подобно любому объекту во Вселенной, он чувствует и все остальные движущиеся заряды, в частности и заряды, колеблющиеся в стекле. Поэтому полное поле, действующее на данный заряд, представляет собой совокупность полей от всех остальных зарядов, движение которых в свою очередь зависит от движения данного заряда! Вы видите, что вывод точной формулы требует решения сложной системы уравнений. Эта система очень сложна, и вы будете изучать ее значительно позднее.
А сейчас обратимся к совсем простому примеру, чтобы отчетливо понять проявление всех физических принципов. Предположим, что действие всех остальных атомов на данный атом мало по сравнению с действием источника. Иными словами, мы изучаем такую среду, в которой полное поле мало меняется из-за движения находящихся в ней зарядов. Такая ситуация характерна для материалов с показателем преломления, очень близким к единице, например для разреженных сред. Наши формулы будут справедливы для всех материалов с показателем преломления, близким к единице. Таким путем мы сможем избежать трудностей, связанных с решением полной системы уравнений.
Вы могли по ходу дела заметить, что движение зарядов в пластинке вызывает еще один эффект. Это движение создает волну, распространяющуюся назад в направлении источника S. Такая обратно движущаяся волна есть не что иное, как луч света, отраженный прозрачным материалом. Приходит он не только с поверхности. Отраженное излучение генерируется во всех точках внутри материала, но суммарный эффект эквивалентен отражению с поверхности. Учет отражения лежит за границами применимости настоящего приближения, в котором показатель преломления считается настолько близким к единице, что отраженным излучением можно пренебречь.
· · ·
Прежде чем перейти к изучению показателя преломления, следует подчеркнуть, что в основе явления преломления лежит тот факт, что кажущаяся скорость распространения волны различна в разных материалах. Отклонение луча света есть следствие изменения эффективной скорости в разных материалах.
Фиг. 31.2. Связь между преломлением и изменением скорости.