Читаем Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты полностью

Чтобы пояснить этот факт, мы отметили на фиг. 31.2 ряд после­довательных максимумов в амплитуде волны, падающей из ва­куума на стекло. Стрелка, перпендикулярная указанным мак­симумам, отмечает направление распространения волны. Всюду в волне колебания происходят с одной и той же частотой. (Мы видели, что вынужденные колебания имеют ту же частоту, что и колебания источника.) Отсюда следует, что расстояния между максимумами волн по обе стороны поверхности совпадают вдоль самой поверхности, поскольку волны здесь должны быть согла­сованы и заряд на поверхности колеблется с одной частотой. Наименьшее расстояние между гребнями волн есть длина волны, равная скорости, деленной на частоту. В вакууме длина волны равна l0=2pс/w, а в стекле l=2pv/w или 2pс/wn, где v=c/n— скорость волны. Как видно из фиг. 31.2, единственный способ «сшить» волны на границе состоит в изменении направления движения волны в материале. Простое геометрическое рассуж­дение показывает, что условие «сшивания» сводится к равен­ству l0/sin q0=l/sinq, или sinq0/sinq=n, а это и есть закон Снелла. Пусть сейчас вас больше не волнует само отклонение све­та; нужно только выяснить, почему же в самом деле, эффектив­ная скорость света в материале с показателем преломления n равна с/n?

· · ·

Вернемся снова к фиг. 31.1. Из сказанного ясно, что нужно вычислить поле в точке Р от осциллирующих зарядов стеклян­ной пластинки. Обозначим эту часть поля, которая представ­ляется вторым членом в равенстве (31.2), через Еа. Добавляя к ней поле источника Es, получаем полное поле в точке Р.

Стоящая перед нами здесь задача, пожалуй, самая сложная из тех, которыми мы будем заниматься в этом году, но сложность ее заключается только в большом количестве складываемых членов; каждый член сам по себе очень прост. В отличие от дру­гих случаев, когда мы обычно говорили: «Забудь вывод и смотри только на результат!», теперь для нас вывод гораздо важнее результата. Другими словами, нужно понять всю физическую «кухню», с помощью которой вычисляется показатель прелом­ления.

Чтобы понять, с чем мы имеем дело, найдем, каким должно быть «поправочное поле» Еа

, чтобы полное поле в точке Р вы­глядело как поле источника, замедлившееся при прохождении через стеклянную пластинку. Если бы пластинка никак не влияла на поле, волна распространялась бы направо (по оси

2) по закону

(31.3)

или, используя экспоненциальную запись,


(31.4)

А что произошло бы, если бы волна проходила через пластин­ку с меньшей скоростью? Пусть толщина пластинки есть Dz. Если бы пластинки не было, то волна прошла бы расстояние Dz за время Dz/c. А поскольку кажущаяся скорость распростра­нения есть c/n, то потребуется время nDz/c, т. е. больше на не­которое добавочное время, равное Dt=(n-l) Dz/c. За пластин­кой волна снова движется со скоростью с. Учтем добавочное вре­мя на прохождение через пластинку, заменив t в уравнении (31.4) на (t-Dt), т. е. [t-(n-1)Dz/c]. Таким образом, если по­ставить пластинку, то формула для волны должна приобрести

(31.5)

Эту формулу можно переписать еще и по-другому:

(31.6)

откуда заключаем, что поле за пластинкой получается умноже­нием поля, которое было бы при отсутствии пластинки (т. е. Es), на ехр[-iw(n-1)Dz/c]. Как мы знаем, умножение осцилли­рующей функции типа eiwt на еi

q означает изменение фазы коле­баний на угол q, возникающее из-за задержки при прохождении пластинки. Фаза запаздывает на величину w(n-1)Dz/c (именно запаздывает, поскольку в экспоненте стоит знак минус).

Мы говорили раньше, что пластинка добавляет поле Еа к первоначальному полю ES=E0ехр[iw(t-z/c)], а вместо этого нашли, что действие пластинки сводится к умножению поля на фактор, сдвигающий фазу колебаний. Однако здесь нет противоречия, поскольку тот же результат можно получить, приба­вив подходящее комплексное число. Это число особенно просто найти для малых Dz, так как ех при малых x с большой точностью равно (1+x).



Фиг. 31.3. Построение вектора поля прошедшей через материал волны при некоторых значениях t и z.


Тогда можно записать

(31.7)

Подставляя это равенство в (31 6), получаем

(31.8)

Первый член в этом выражении есть просто поле источника, а второй следует приравнять Еа — полю, создаваемому осцилли­рующими зарядами пластинки справа от нее. Поле Еа выражено здесь через показатель преломления n; оно, разумеется, зависит от напряженности поля источника.

· · ·

Перейти на страницу:

Похожие книги

Новая Элоиза, или Письма двух любовников
Новая Элоиза, или Письма двух любовников

«Новая Элоиза, или Письма двух любовников» – самый известный роман французского мыслителя и прозаика Жан-Жака Руссо (франц. Jean-Jacque Rousseau, 1712-1778). *** Это сентиментальная история в письмах о любви прекрасной Юлии д'Этанж к своему учителю Сен-Пре. Мировую известность автору принесли произведения «Рассуждение о начале и основании неравенства между людьми, Сочиненное г. Ж. Ж. Руссо», «Руссовы письма о ботанике», «Семь писем к разным лицам о воспитании», «Философические уединенные прогулки Жан Жака Руссо, или Последняя его исповедь, писанная им самим», «Человек, будь человечен», «Общественный договор», пьеса «Пигмалион» и стихотворение «Fortune, de qui la main couronne». Жан-Жак Руссо прославился как выдающийся деятель эпохи Просвещения и человек широкого кругозора. Его сочинения по философии, ботанике и музыке глубоко ценятся современниками во Франции и во всем мире.

Жан-Жак Руссо

Проза / Классическая проза / Классическая проза XVII-XVIII веков / Прочая старинная литература / Древние книги