Возьмём к примеру электронно-вычислительные машины. Ведь они тоже состоят из множества электронных приборов и устройств. Первая созданная, разумеется, ламповая машина ENIAC весила 30 тонн и занимала поверхность более 140 м2
. Около 10 лет назад была построена транзисторная электронно-вычислительная машина, она уже весила менее 1600 кг и занимала поверхность около 25 м2.Теперь, я думаю, ребята, вы понимаете, какое важное значение для конструкторов компьютеров имеет наличие возможно меньших и более лёгких электронных деталей. Ведь от этого зависит уменьшение размеров самих компьютеров, а они по-прежнему остаются еще слишком громоздкими.
Миниатюрные электронные элементы очень нужны конструкторам самолётов и космических кораблей.
Ведь на борту последних устанавливается всё бóльшее количество сложных электронных приборов, а экономия каждого грамма массы и каждого кубического сантиметра объёма имеет в данном случае огромное значение.
Уже эти два примера, а их можно привести гораздо больше, наглядно свидетельствуют о том, как нужны возможно меньшие электронные элементы. Только как добиться еще бóльшей миниатюризации?
И вот мы пришли с вами, ребята, к тому, с чего начали эту статью — к микромодулям. Что это такое?
Микромодуль — это часть электронного прибора, построенная так, как не строилось раньше ни одно электронное устройство. В них уже нет прочных стальных шасси, нет и меньших пластинок с печатными схемами. Микромодуль состоит из крошечных керамических пластинок, их толщина составляет всего лишь доли миллиметра. Каждая пластинка имеет форму квадрата, а его сторона равна нескольким миллиметрам. На квадратной пластинке расположены отдельные электронные детали: транзисторы, резисторы или конденсаторы. Но не думайте, ребята, что к пластинке прикрепляется трубочка резистора или конденсатора. Ничего подобного! Просто на пластинку наносится путём распыления очень тонкий слой металла, и сама пластинка начинает выполнять роль резистора или конденсатора, катушки индуктивности, диода или транзистора. Несколько пластинок укладывают друг на друга и соответствующим образом соединяют между собой. Получается что-то наподобие «вафли». Такая «мини-вафля» и называется микромодулем. Если сравнить часть электронного устройства, построенного при помощи транзисторов и печатных схем, с аналогичной «микромодульной» частью, окажется, что размеры последней в 25 раз меньше первой. Именно благодаря микромодулям можно построить электронный усилитель, который по своим размерам не больше пилёного кусочка сахара.
А можно ли еще уменьшить размеры и так уже крошечных электронных деталей? Пожалуй, невозможно. Не ведь вся история электроники полна подобных «невозможностей». Генрих Герц, открыв электромагнитные волны, не особенно верил в возможность передачи звука на расстояние с помощью радиоволн. Очень долго не верили в возможность усиления электроколебаний каким-либо другим прибором, кроме электронной лампы.
Вот и сейчас после продолжительных исследований, многочисленных научных экспериментов инженеры, физики и химики преодолели еще один предел, совершили то, что совсем недавно казалось невозможным.
В наш век миниатюризации электронный усилитель величиной с кусочек сахара электроники считают огромным устройством, так как они научились изготовлять дословно «микроскопические» детали и в таком объёме, какой занимает кусочек сахара, может поместиться несколько сотен аналогичных усилителей.
Интересно, а как собирают такие схемы? Неужели детали соединяют пайкой? Какими инструментами пользуются? Пожалуй, прежде всего нужен микроскоп.
Оказывается, при сборке современных электронных устройств, деталь вовсе не соединяют пайкой. В этих новых «интегральных схемах» каждый транзистор — уже не «грибок» и не крошечная пластинка, а всего-навсего пятнышко, измеряемое долями миллиметра. Такие же «микроскопические» резисторы, катушки индуктивности, конденсаторы. Собственно, в интегральных схемах речь идет не об отдельных деталях, а о целых наборах деталей. Кристаллику полупроводника, нанесённому на основание из изоляционного материала, придана такая форма, что он обладает свойствами нескольких транзисторов, резисторов и т. п. и в итоге представляет собой конкретную часть электронного устройства. Например, на поверхности менее двух квадратных сантиметров, в слое толщиной в два микрона можно поместить шесть тысяч диодов! Конечно, изобретателю диода А. Флемингу и не снилось, что когда-нибудь удастся добиться этого.
А что дальше?
Ведь ученые, по всей вероятности, не сказали последнего слова, еще не достигли предела, если он вообще существует, миниатюризации электронных элементов. Во всем мире инженеры продолжают работать над этим вопросом. Интегральные схемы находят всё более широкое применение в разных электронных устройствах.
Кто знает, может быть, в будущем у каждого из нас будет в распоряжении компьютер, вмонтированный в ручные часы.