В эпоху виртуальных построений, когда суперкомпьютеры создают модели потоков в любых системах, начиная от реактивных турбин и заканчивая сердечными клапанами, забываешь, как легко природа может поставить экспериментатора в тупик. Фактически ни один компьютер сегодня не в состоянии полностью имитировать даже такую несложную систему, как ячейка с жидким гелием Либхабера. Всякий раз, когда опытный физик изучает компьютерную модель, он вынужден задаваться вопросом, какая часть действительности не учтена и какие проблемы это сулит. Либхабер любил повторять, что не рискнул бы пуститься в дорогу на виртуальном самолете – кто знает, какой детали в нем недостает? Более того, он замечал, что компьютерные модели помогают строить интуитивные догадки или совершенствовать вычисления, но не становятся источником подлинных открытий. Во всяком случае, так звучало кредо истинного экспериментатора. Опыт Либхабера казался столь безукоризненным, а научные цели – столь абстрактными, что находились физики, относившие его работу больше к философии или к математике, нежели к физике. Экспериментатор, в свою очередь, полагал, что в его дисциплине господствуют редукционистские стандарты, отдающие пальму первенства изучению свойств атомов.
«Физик спросит: как может данный атом, появившись здесь, обосноваться там? Какова чувствительность к воздействию на поверхность? Можно ли написать гамильтониан системы? Если я отвечу, что меня интересует лишь сама форма, ее математика и эволюция, бифуркация, переход к другой форме, возвращение к рассматриваемой, он заявит, будто я занимаюсь не физикой, а математикой. Даже сегодня я слышу такие утверждения. Что я могу сказать на это? Да, конечно, я занимаюсь математикой, но она имеет прямое отношение к тому, что происходит вокруг нас, и это тоже проявление природы»[279]
.Обнаруженные Либхабером закономерности действительно были абстрактными, математическими и ничего не проясняли в свойствах жидкого гелия, меди или в поведении атомов при температуре, близкой к абсолютному нулю. Но именно об обнаружении таких закономерностей мечтали мистически настроенные предшественники Либхабера. Эти закономерности узаконили эксперименты, которыми вскоре займутся многие ученые – от химиков до инженеров-электронщиков – в поисках новых элементов движения. Закономерности обнаружились, когда Либхабер, увеличив температуру, сумел выделить первое удвоение периодов, а затем еще одно, и еще. Согласно новой теории, бифуркации должны были воспроизводить геометрию с точным масштабированием, что и обнаружил Либхабер. Универсальные константы Фейгенбаума с этого мгновения превращались из математического идеала в физическую реальность, которую можно было измерить и воспроизвести. Либхабер долго вспоминал потом свои ощущения в тот сверхъестественный миг, когда он наблюдал одну бифуркацию за другой и понял, что перед ним бесконечный каскад изменений с богатейшей структурой. Это было, как он выразился, занятно.
Глава 8
Образы хаоса
Что еще, как не хаос, взывает к внутренним силам, Дабы придать форму единственному листку…
Математик Майкл Барнсли встретил Митчелла Фейгенбаума на конференции на Корсике в 1979 году[280]
. Барнсли, недавний выпускник Оксфорда, только-только познакомился с понятием универсальности, удвоением периодов и бесконечным каскадом бифуркаций. «Отличная идея, – подумал он. – И конечно, все набросятся на нее, чтобы отхватить кусочек». Себе Барнсли тоже присмотрел кусочек, не замеченный еще ни одним из конкурентов.Откуда происходили эти циклы: 2, 4, 8, 16, – эти последовательности Фейгенбаума? Появлялись ли они, будто по мановению волшебной палочки, из математической пустоты или содержали в себе намек на нечто более глубокое? Барнсли интуитивно чувствовал, что они часть какого-то невероятного фрактального объекта, ускользавшего до сих пор из поля зрения ученых.