Фейгенбаум задался вопросом, какого рода математический формализм должен соответствовать человеческому восприятию, особенно тем его видам, которые отсеивают суетное многообразие полученного опыта, обнаруживая универсальные свойства. Красное не обязательно является светом определенной частоты, как представлялось последователям Ньютона; это территория хаотичного мира, границы которой не так-то просто описать. И все же наш ум находит красное с устойчивым и проверенным постоянством. Таковы были мысли молодого ученого-физика, далекие, казалось бы, от проблем турбулентности в жидкостях. Но все же для того, чтобы постичь, как человеческий мозг разбирается в хаосе восприятия, прежде нужно понять, как беспорядок способен породить универсальность.
Начав в Лос-Аламосе размышлять над феноменом нелинейности, Фейгенбаум понял, что из своего обучения он, в сущности, не вынес ничего полезного. Решить систему нелинейных дифференциальных уравнений, не придерживаясь примеров из учебника, было невозможно. Метод возмущений с его последовательными корректировками поддающейся решению задачи, которая, как предполагалось, близка к реальной проблеме, выглядел довольно глупым. Ознакомившись с рядом руководств по нелинейным потокам и колебаниям, ученый сделал вывод, что сколько-нибудь разумному физику они мало чем помогут. Имея в своем распоряжении лишь карандаш и бумагу для вычислений, Фейгенбаум решил начать с аналога простого уравнения, рассмотренного в свое время Робертом Мэем применительно к популяционной биологии.
С таким уравнением – его можно записать как
Для Мэя, а затем и для Фейгенбаума главное заключалось в том, чтобы произвести это простое вычисление не один раз, а повторять его бесконечно, как в «петле обратной связи». Итоги одного подсчета служили исходными данными для следующего. Для графического представления результатов парабола оказывалась незаменимой. Надо было выбрать начальную точку на оси
Казалось, нельзя было найти ничего более далекого от сложных расчетов теоретической физики. Вместо единовременного решения запутанной системы одна и та же простая операция повторялась вновь и вновь. Ставящий подобные опыты с числами будет наблюдать, подобно химику, который следит за ходом реакции, бурление внутри мензурки. Результат являл собой ряд чисел, не всегда достигавший в итоге устойчивого значения: он мог завершиться скачками значения в некотором интервале или, как разъяснял Мэй своим коллегам-биологам, изучающим популяции, ряд мог продолжать изменяться совершенно хаотичным образом настолько долго, насколько хватит терпения за ним наблюдать. Поведение числового ряда зависело от выбранного значения параметра.
Выполняя расчетную часть своих исследований, которую едва ли можно было назвать экспериментом, Фейгенбаум одновременно пытался анализировать нелинейные функции с более традиционных, теоретических позиций. Но даже тогда он не смог увидеть всю полноту возможностей, что открывали уравнения. Тем не менее ученый понял, что возможности эти весьма сложны и анализ их окажется довольно трудоемким. Он также знал, что три математика из Лос-Аламоса – Николас Метрополиc Пол Стейн и Майрон Стейн – изучали в 1971году похожие отображения, и теперь Пол Стейн предупредил Фейгенбаума, что они в самом деле пугающе сложны. Если анализ результатов решения простейшего уравнения оказался столь трудным, чего же было ожидать от гораздо более запутанных формул, которыми ученые могли бы описывать реальные системы? И Фейгенбаум отложил проблему в долгий ящик.