Читаем Хаос. Создание новой науки полностью

В поисках аналогий – но только лишь аналогий – Фейгенбаум мог обратиться к той таинственной границе, что отделяет плавное течение жидкости от турбулентного. Именно к этому участку Роберт Мэй пытался привлечь внимание биологов, которые не замечали, что популяции животных переживают не одни лишь упорядоченные циклы. На пути к хаосу в указанной зоне возникает целый каскад удвоения периодов: расщепление двух на четыре, четырех – на восемь и так далее, представляющее собой весьма удивительную картину. Именно в точках бифуркации некоторое изменение плодовитости особей могло привести к смене четырехгодичного цикла популяции непарного шелкопряда восьмигодичным. Фейгенбаум решил начать с подсчета точных значений параметра, порождавших расщепления.

В конце концов в тот август к открытию ученого привела, как ни странно, неспешность вычислений с помощью калькулятора. Казалось, расчеты точного значения параметра для каждого удвоения периодов занимают целую вечность, хотя на самом деле – считаные минуты. Однако чем выше поднимался Фейгенбаум по цепочке циклов, тем больше времени требовали операции с числами. Имей ученый мощный компьютер и печатающее устройство, он, пожалуй, не заметил бы никакой закономерности, но ему приходилось записывать результаты вручную и, пока калькулятор работал, размышлять над ними. Чтобы сэкономить время, он просто-напросто пытался угадать, каким будет следующее значение.

И вдруг Фейгенбаум увидел, что гадать уже незачем. В системе пряталась неожиданная упорядоченность: числам была присуща геометрическая сходимость, словно телеграфные столбы сходятся в точку на горизонте на рисунке в перспективе. Если вы знаете, какими хотите изобразить любые два столба, вы знаете и остальное: отношение второго к первому будет таким же, как отношение третьего ко второму и так далее. Удвоения периодов не просто ускорялись, а ускорялись с постоянным коэффициентом.

Почему так происходило? Обычно появление геометрической сходимости предполагает, что в определенном месте некий объект повторяет сам себя в различных масштабах. Но если внутри изучаемой системы и таилась подобная масштабируемая модель, ее еще никто не заметил. Рассчитав коэффициент сходимости с наибольшей точностью, какая могла быть достигнута с имевшимся у него калькулятором (три цифры после запятой), Фейгенбаум получил следующий результат: 4,669. Имел ли этот коэффициент какой-либо математический смысл? Фейгенбаум сделал то, что на его месте сделал бы любой ученый, интересующийся числами: он провел остаток дня, пытаясь подогнать получившийся результат под известные постоянные: π, е

и другие, но это ни к чему его не привело.

Удивительно, но позже Роберт Мэй понял, что он тоже наблюдал подобную геометрическую сходимость, однако забыл о ней столь же быстро, сколь мимолетно она промелькнула перед его глазами[237]. С точки зрения эколога Мэя, это был не более чем специфический вычислительный эффект. В системах реального мира – популяциях животных и даже некоторых экономических моделях – любые четкие закономерности неизбежно исчезали в шумах. Та самая неупорядоченность, которая до сих пор служила ученому путеводной нитью, заставила его остановиться в критически важной точке. Мэй был взволнован вопиющим поведением уравнения. Никогда бы ему не пришло в голову, что числовые тонкости окажутся столь важными.

Но Фейгенбаум прекрасно понимал, к чему привели его вычисления, поскольку геометрическая сходимость указывала на присутствие в уравнении какого-то явления, связанного с масштабом, а Митчелл в полной мере сознавал существенность масштаба, от которого, по сути, зависела вся теория перенормировки. В явно неуправляемой системе масштабируемость свидетельствовала о том, что определенное качество сохраняется, в то время как все остальные претерпевают изменения. Итак, за турбулентной поверхностью уравнения скрывалась упорядоченность. Но где именно? Куда идти дальше, сказать было сложно.

Перейти на страницу:

Все книги серии Книги политеха

Легко ли плыть в сиропе. Откуда берутся странные научные открытия
Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Генрих Владимирович Эрлих , Сергей М. Комаров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Хаос. Создание новой науки
Хаос. Создание новой науки

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.В формате PDF A4 сохранен издательский макет.

Джеймс Глик

Научная литература
Луна. История будущего
Луна. История будущего

Британский журналист и писатель Оливер Мортон освещает в своих работах влияние научно-технического прогресса на нашу жизнь. Луна испокон веков занимала второстепенное место в мифологическом сознании, в культурном контексте, а потом и в астрономических исследованиях. Краткий апогей ее славы, когда по лунной поверхности прошлись люди, окончился более полувека назад. И тем не менее Луна всегда рядом, скромная, но незаменимая, неразрывно связанная с прошлым, настоящим и будущим человечества. Мортон создает ее объемный портрет, прорисовывает все грани нашего с ней взаимодействия и наглядно показывает: что бы ни происходило с нами дальше, Луна продолжит играть свою тихую, но ключевую роль.В формате PDF A4 сохранен издательский макет книги.

Оливер Мортон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной

Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?

Сергей Борисович Попов

Справочники

Похожие книги

Как написать курсовую или дипломную работу за одну ночь
Как написать курсовую или дипломную работу за одну ночь

Известно, что независимо от времени, предоставленного на написание работы, большинством населения Земли она пишется в последний день (более того, в последнюю ночь). Несмотря на это, большинству населения Земли написание работы в последний момент не мешает защищать курсовые работы и получать дипломы вовремя. Итак, написание работы за ночь все же следует признать принципиально возможным.Естественно, написать работу за ночь можно только в том случае, если вы имеете о ней хоть какое-то представление и за прошедший семестр хотя бы периодически обращали на нее внимание. Если сегодня вечер первого дня, когда вы увидели тему, а завтра утром уже защита – имейте мужество и не издевайтесь над своим мозгом, дайте ему спокойно поспать, а книжку почитайте в другой раз. Если все же хоть какой-то багаж знаний у вас есть и вам действительно не хватает одной ночи для того, чтобы привести этот багаж в порядок и оформить на бумаге необходимый результат, – тогда вы взяли в руки нужную книгу!

Аркадий Захаров , Егор Шершнев

Научная литература / Прочая справочная литература / Словари и Энциклопедии