Читаем Хаос. Создание новой науки полностью

Хаос под микроскопом. Митчелл Фейгенбаум сосредоточился на незатейливых функциях, раз за разом с помощью простого уравнения вычисляя значение одной величины в зависимости от другой. В случае с популяциями животных функция могла выражать соотношение между численностью в текущем году и в следующем. Одним из способов наглядного представления таких функций является построение графика, где исходные данные отмечаются на горизонтальной оси, а конечные – на вертикальной. Для каждого значения χ существует лишь одно значение у, и эта зависимость представлена на графике жирной линией. Затем, чтобы изобразить долгосрочное поведение системы, Фейгенбаум вычертил траекторию, начинавшуюся с произвольно взятого значения х. Поскольку каждое значение у вновь подставлялось в ту же функцию в качестве новой исходной величины, ученый мог применить своего рода ухищрение: траектория должна была как бы отражаться от прямой, проведенной под углом в 45 градусов, где значения χ и у равны. Для эколога наиболее очевидным типом функции, отображающей рост популяции, будет линейная – мальтузианская схема устойчивого и ничем не ограниченного увеличения численности с фиксированным ежегодным приростом (вверху слева). Более реалистичные функции представляют собой дугу, сокращающую популяцию, если та становится слишком большой. Здесь изображено так называемое логистическое отображение, идеальная парабола, заданная функцией у = гх

(1 – х), где параметр r
меняется от О до 4, определяя крутизну параболы. Но, как выяснил Фейгенбаум, конкретный вид функции, формирующей дугу, не имел значения. Действительно важным было наличие у нее «горба». Поведение тем не менее существенно зависело от крутизны кривой – от степени нелинейности, или, как выражался Роберт Мэй, «подъемов и спадов» (то есть от способности живущей в естественных условиях популяции к увеличению числа составляющих ее особей). Слишком пологая парабола означала вымирание: любое начальное значение численности в итоге падало до нуля (средний ряд, слева). Увеличение степени крутизны порождало устойчивое равновесие – ситуацию, понятную для эколога, который придерживается традиционных взглядов. Точка равновесия, притягивающая все траектории, являлась одномерным аттрактором[240]
(средний ряд, справа). После определенной точки происходила бифуркация, порождающая колеблющуюся популяцию с периодом 2 (внизу слева
). Затем опять происходили удвоения периода, так что в конце концов траектория вообще отказывалась «успокаиваться» (внизу справа). Когда Фейгенбаум попытался создать новую теорию, подобные изображения послужили ему отправной точкой. Он начал размышлять в терминах рекурсии: функции от функций, функции от функций от функций и так далее; отображения с двумя «горбами», потом с четырьмя…

Фейгенбаум занимался изучением давно забытой пограничной области между физикой и математикой. Какой из двух дисциплин принадлежит его работа, определить было нелегко. Его труд не принадлежал математике, поскольку ничего не доказывал. Конечно, ученый оперировал числами, но математик относится к ним так же, как банкир – к мешкам со звонкой монетой. Номинально эти металлические кругляши – предмет труда финансиста, но они мелковаты и возни с ними не оберешься. Идеи – вот настоящая валюта математики! Изыскания Фейгенбаума относились скорее к области физики, причем, как ни странно, физики экспериментальной.

Не мезоны и кварки, а числа и функции являлись объектом внимания ученого. Они тоже имели траектории и орбиты. Ему приходилось исследовать их поведение. Ему требовалось – как станет модно говорить в новой науке – развить интуицию. Его личным ускорителем частиц и камерой Вильсона стал компьютер. Одновременно с теорией он создавал и методологию. Обычно пользователь формулирует задачу, программирует ее, вводит в вычислительную машину и ждет решения – одного для каждой конкретной проблемы. Фейгенбаум и те исследователи хаоса, которые шли по его стопам, нуждались в большем. Им требовалось повторить проделанное Лоренцем – создать миниатюрные вселенные и наблюдать за их эволюцией. Затем, меняя то или иное свойство, исследователи могли проследить, как поменяются пути развития. В конечном счете они убедились, что крошечные изменения определенных качеств могут повлечь за собой значительные метаморфозы поведения системы в целом.

Перейти на страницу:

Все книги серии Книги политеха

Легко ли плыть в сиропе. Откуда берутся странные научные открытия
Легко ли плыть в сиропе. Откуда берутся странные научные открытия

Как связаны между собой взрывчатка и алмазы, кока-кола и уровень рождаемости, поцелуи и аллергия? Каково это – жить в шкуре козла или летать между капель, как комары? Есть ли права у растений? Куда больнее всего жалит пчела? От несерьезного вопроса до настоящего открытия один шаг… И наука – это вовсе не унылый конвейер по производству знаний, она полна ошибок, заблуждений, курьезных случаев, нестандартных подходов к проблеме. Ученые, не побоявшиеся взглянуть на мир без предубеждения, порой становятся лауреатами Игнобелевской премии «за достижения, которые заставляют сначала рассмеяться, а потом – задуматься». В своей книге авторы Генрих Эрлих и Сергей Комаров рассказывают об этих невероятных открытиях, экспериментах исследователей (в том числе и над собой), параллелях (например, между устройством ада и черными дырами), далеко идущих выводах (восстановление структуры белка и поворот времени вспять), а самое главное – о неиссякаемой человеческой любознательности, умении задавать вопросы и, конечно же, чувстве юмора.

Генрих Владимирович Эрлих , Сергей М. Комаров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научно-популярная литература / Образование и наука
Хаос. Создание новой науки
Хаос. Создание новой науки

«Хаос. Создание новой науки» – мировой бестселлер американского журналиста Джеймса Глика, переведенный более чем на два десятка языков, в котором он рассказывает историю возникновения науки о хаосе. Начав со случайного открытия метеоролога Эдварда Лоренца, пытавшегося создать модель долгосрочного прогноза погоды, Глик последовательно реконструирует всю цепочку внезапных озарений и необычных экспериментов, которые привели ученых к осознанию, что существуют еще неизвестные им универсальные законы природы. Глик не только рассказывает историю рождения новой науки, но и размышляет над тем, каким образом происходит научный прогресс и какова в нем роль безумных гениев, занимающихся поисками нестандартных решений вопреки имеющемуся знанию.В формате PDF A4 сохранен издательский макет.

Джеймс Глик

Научная литература
Луна. История будущего
Луна. История будущего

Британский журналист и писатель Оливер Мортон освещает в своих работах влияние научно-технического прогресса на нашу жизнь. Луна испокон веков занимала второстепенное место в мифологическом сознании, в культурном контексте, а потом и в астрономических исследованиях. Краткий апогей ее славы, когда по лунной поверхности прошлись люди, окончился более полувека назад. И тем не менее Луна всегда рядом, скромная, но незаменимая, неразрывно связанная с прошлым, настоящим и будущим человечества. Мортон создает ее объемный портрет, прорисовывает все грани нашего с ней взаимодействия и наглядно показывает: что бы ни происходило с нами дальше, Луна продолжит играть свою тихую, но ключевую роль.В формате PDF A4 сохранен издательский макет книги.

Оливер Мортон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Учебная и научная литература / Образование и наука
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной
Вселенная. Краткий путеводитель по пространству и времени: от Солнечной системы до самых далеких галактик и от Большого взрыва до будущего Вселенной

Современная астрофизика – это быстро развивающаяся наука, которая использует новейшие (и очень дорогие) приборы и суперкомпьютеры. Это приводит к огромному потоку результатов: экзопланеты и темная энергия, гравитационные волны и первые снимки Плутона с близкого расстояния. В результате астрономическая картина мира постоянно меняется. Однако многие фундаментальные особенности этой картины уже сформировались. Мы знаем, что живем в расширяющейся Вселенной, чей возраст составляет немногим менее 14 млрд лет. Нам известно, как формировались и формируются ядра элементов. Мы можем наблюдать разные стадии формирования звезд и планетных систем. Удается даже разглядеть, как в дисках вокруг звезд формируются планеты. Тем не менее остается много вопросов и загадок. Что такое темное вещество и темная энергия? Как взрываются сверхновые разных типов? Как устроены черные дыры? Наконец, есть ли еще жизнь во Вселенной, и какой она может быть?

Сергей Борисович Попов

Справочники

Похожие книги

Как написать курсовую или дипломную работу за одну ночь
Как написать курсовую или дипломную работу за одну ночь

Известно, что независимо от времени, предоставленного на написание работы, большинством населения Земли она пишется в последний день (более того, в последнюю ночь). Несмотря на это, большинству населения Земли написание работы в последний момент не мешает защищать курсовые работы и получать дипломы вовремя. Итак, написание работы за ночь все же следует признать принципиально возможным.Естественно, написать работу за ночь можно только в том случае, если вы имеете о ней хоть какое-то представление и за прошедший семестр хотя бы периодически обращали на нее внимание. Если сегодня вечер первого дня, когда вы увидели тему, а завтра утром уже защита – имейте мужество и не издевайтесь над своим мозгом, дайте ему спокойно поспать, а книжку почитайте в другой раз. Если все же хоть какой-то багаж знаний у вас есть и вам действительно не хватает одной ночи для того, чтобы привести этот багаж в порядок и оформить на бумаге необходимый результат, – тогда вы взяли в руки нужную книгу!

Аркадий Захаров , Егор Шершнев

Научная литература / Прочая справочная литература / Словари и Энциклопедии