Струящиеся ручьи, качающиеся маятники, электронные осцилляторы и множество других физических систем испытывают переход на пути к хаосу. Хотя такие переходы весьма сложны для анализа, механизмы функционирования систем изучены довольно хорошо. Физики знают все уравнения, которые описывают эти системы, но перебросить мостик от уравнений к пониманию глобального долгосрочного поведения объектов не представляется возможным. К сожалению, уравнения для жидкостей и даже маятников являются куда большим испытанием, нежели простое одномерное логическое отображение. Открытие Фейгенбаума подсказывало, что дело не в уравнениях: с появлением порядка вид уравнения терял свою значимость и независимо от того, квадратичное оно или тригонометрическое, результат получался один и тот же. «Традиция физики такова, что мы обособляем механизмы явления, а затем исследуем их по отдельности, – пояснял Фейгенбаум. – Но все разваливается. Мы знаем верные уравнения, но они нам не помогут. Суммировав все микроскопические фрагменты, мы выясним, что не можем распространить их на длительный период, потому что не они важны в интересующей нас проблеме. И это коренным образом меняет смысл выражения „знать что-либо“»[239]
.И хотя связь между вычислениями и физикой казалась весьма проблематичной, Фейгенбаум понял, что нужно искать новый способ расчетов сложных нелинейных проблем. До сих пор все доступные методы зависели от особенностей функций. Если функция была синусом, то и тщательно выполненные Фейгенбаумом расчеты тоже были синусовыми. Его открытие некой универсальности означало, что ни один из этих методов не подходит. Регулярность никоим образом не касалась синусов, не имела ничего общего с параболами или с другими отдельно взятыми функциями. Но почему? Это был шок! Природа, на мгновение отдернув занавес, позволила украдкой взглянуть на неожиданную упорядоченность. Но что еще пряталось за покровом тайны?
Озарение явилось Фейгенбауму в образе двух небольших волнистых форм и еще одной покрупнее. И ничего больше. Лишь яркое и четкое изображение, словно врезавшееся в сознание. Верхушка айсберга, отголосок мыслительных процессов, происходивших где-то на уровне подсознания; он был связан с масштабированием и указывал ученому верный путь.
Фейгенбаум изучал аттракторы. Устойчивое равновесие, о котором говорили его графики, было фиксированной точкой, притягивавшей, в свою очередь, другие. Не имело значения, какова начальная «популяция», – она все равно неуклонно приближалась к аттрактору. Затем, с первым раздвоением периодов, аттрактор, подобно делящейся клетке, раздваивался. Первоначально две эти точки находились совсем рядом, но по мере роста значения параметра они отдалялись друг от друга. Затем происходило следующее расщепление периодов – и каждая точка аттрактора вновь начинала делиться. Число – инвариант, полученный Фейгенбаумом, – позволило ему предугадывать, когда именно это произойдет. Ученый обнаружил, что может прогнозировать точное значение каждой точки этого сложнейшего аттрактора – двух, четырех, восьми точек… Он мог прогнозировать действительную численность, которая достигается в популяциях во время ежегодных колебаний. Кроме того, здесь наблюдалась геометрическая сходимость: все числа также подчинялись закону масштаба.