Итак, доказательство. Центральное понятие для всей математики, я бы даже сказал —
— То, что в равнобедренном треугольнике углы при основании равны, совершенно очевидно — можно убедиться на примерах. Тем не менее нам этот факт доказывают. С другой стороны, то, что электрическое напряжение равно силе тока, умноженной на сопротивление, нисколько не очевидно. Однако этот факт нам почему-то не доказывают, а только иллюстрируют опытами. Почему?
Такой вопрос — редкость. Большинство школьников воспринимают доказательства как некий принятый в математике ритуал. В математике так полагается, и всё тут. Как тут не вспомнить один исторический анекдот, относящийся, кажется, к XVIII веку. Один человек, бравший уроки математики, будто бы сказал своему учителю:
— К чему все эти туманные рассуждения! Ведь вы же дворянин, и я тоже. Дайте мне честное слово, что теорема верна — мне этого вполне достаточно.
Но не то же ли самое происходит с нами, когда мы читаем, скажем, учебник истории? Никаких доказательств, одни лишь «формулировки теорем»: было так, было там, было тогда. Точка. И вот оказывается, что «честное слово дворянина» — в данном случае автора учебника — вполне достаточно для того, чтобы всему поверить. На самом деле каждодневная работа математика не так уж сильно отличается от работы историка. Это иллюзия — полагать, что математик находит доказательство и на этом успокаивается, ибо в подавляющем большинстве случаев он производит на свет ложные доказательства. Но он видит, что тем же методом можно доказать, скажем, и иное, заведомо ложное утверждение — и он продолжает поиск, ищет ошибки, ищет противоречия, ищет другие пути к цели.
Однако дискуссия на эту тему увела бы нас слишком далеко. Поэтому вернёмся к детям. Материала, на котором можно знакомить детей с идеей доказательства, не так уж много, но он всё же существует. Например, задачи типа «четвёртый — лишний» с неоднозначными ответами. В них важно не только дать ответ, но и правильно его объяснить. Решали мы также и задачи такого типа: доказать, что мы видим глазами, а слышим ушами, но не наоборот (доказательство: если закрыть глаза, мы перестаём видеть, а если закрыть уши, перестаём слышать); доказать, что облака ближе к земле, чем солнце (доказательство: облака заслоняют солнце); доказать, что мы думаем головой, а не животом. Я сам так и не сумел придумать убедительного решения этой задачи[13]
; на кружке же я предложил вот какое: если человеку отрубить голову, он перестаёт думать. Мне возражали, но никто не сказал, что то же доказательство проходит и для живота.Ну а что могло бы послужить доказательством в нашей комбинаторной задаче? Ясно, что это должен быть
Вернёмся к тому обсуждению, рассказ о котором мы прервали на полуслове. Итак, как же убедиться, что, кроме найденных десяти решений, других нет? Дима:
— Нужно много лет пробовать, и если ничего не найдёшь, значит, и нет.
Я возражаю:
— А вдруг всё-таки есть?
Женя пессимистично заявляет:
— Я больше ничего найти не смогу.