Читаем Математика для гуманитариев: живые лекции полностью

Возьмем и изогнем, изомнем, растянем поверхность шара, но нигде не порвем;, и не склеим, никакие две точки в одну. Мы можем из нее таким образом получить, например, куб (то есть, естествен­но, не сам куб, а его поверхность). Чтобы понять, как это дела­ется, покажем, как из круга, изготовленного из резины, получить квадрат (размеры квадрата неважны). Для этого надо в четырех равноудаленных местах границы круга потянуть наружу резино­вый слой, пока он не примет форму квадрата. В частности, точки границы круга превратились в точки периметра квадрата.

Можно много чего сделать из резиновой камеры сдутого фут­больного мяча. Но есть интуиция

, которая подсказывает, что ав­томобильную (или велосипедную) камеру из камеры футбольного мяча сделать будет затруднительно, даже используя те широкие возможности, которые предоставляет нам топология. Куб, элли­псоид (то есть сжатая поверхность сферы), яблоко, арбуз — по­жалуйста, а вот бублик из шара не сделаешь, не порвав его, либо не склеив между собой некоторые точки. Согласно сказанному вы­ше, надо различать две разные задачи: 1) Из заполненного шара сделать заполненный бублик и 2) Из поверхности шара сделать поверхность бублика. Первая задача «решена» в подписи к рис. 28.

И Эйлер задался вопросом, а можно ли это утверждение дока­зать? Вроде бы интуитивно оно совершенно понятное. Но матема-

тика ставит задачу перевести очевидное на язык строго доказанно­го. Ведь если мы откроем цивилизацию, которая, например, живет на плоскости, для ее жителей будет не очевиден рассматриваемый нами факт (см. врезку 2). А с номощыо математики мы сможем передать им содержание теоремы. К чему я клоню?

Врезка 2. Эйнштейн — о топологии

Однажды А. Эйнштейна попросили совсем кратко, на понятном любому языке, пояснить, в чем состоит суть сделанных им откры­тий. Он ответил: все мы, люди, словно маленькие жучки с завя­занными глазами, ползающие но поверхности большого мяча и во­ображающие, что двигаемся но плоскости. Я же первый понял, что мир, в котором я живу, искривлен.

Но пока не совсем понятно, как именно он искривлен. (То есть, «по-научному», каков топологиче­ский тип космоса.)

А вот к чему. Несколько лет назад математик Г. Перельман установил похожий факт, но только в пространстве больших из­мерений. Факт про фигуры в многомерном пространстве, которые локально похожи на искривленное трехмерное пространство. Мы живом в трехмерном пространстве, мы четвертого измерения не ви­дим и не чувствуем. Мы можем только рассуждать, что четвертое измерение это время, но объять его взором не можем. Поэто­му мы не можем говорить так спокойно и убежденно, что сделать из шара тор в пространстве больших измерений нельзя. (Ведь в 4­мерном пространстве, как указывалось выше, МОЖНО, не нару­шая правил топологии, превратить незаметным образом человека с сердцем, расположенным слева, в человека с сердцем, располо­женным справа.)

Нам нужен язык, на котором это можно доказать. И вот для то­го, чтобы это можно было доказывать, для того чтобы через много лет Перельман смог доказать «гипотезу Пуанкаре» (после того как ее доказали, она вместо гипотезы Пуанкаре стала называться те­оремой Перельмана или Пуанкаре Перельмана), Эйлер начал большой путь. Он перевел то, что мы с вами считаем очевидным, в точное, железобетонное математическое рассуждение. Как же он это сделал? Он нарисовал на поверхности шара, мяча, арбуза, гло­буса, любого круглого объекта некоторую карту. Иными словами, некий искривленный многогранник (рис. 29).

С точки зрения топологии, любой многогранник это тоже шар. Тетраэдр это шар. куб это шар. октаэдр, любой парал­лелепипед это всё шары. Например, потому что если их выпол­нить из резины и надуть, то получится футбольный мяч. то есть шар. Но до работ Эйлера еще не было «точки зрения топологии», так как не было и самой топологии.

Эйлер «чувствовал», что все эти объекты одинаковые. В чём именно? И как это объяснить остальным людям? В особенности его интересовал вопрос: как доказать, что поверхность шара, по­верхность бублика, поверхность кренделя неодинаковые?8 В ответ на первый вопрос ясность позже внес Анри Пуанкаре (после то­го, как Огюст Коши внес должную ясность в вопрос, что такое «непрерывная функция»). Однако Эйлер сразу обратился ко вто­рой задаче (о доказательстве неодинаковости двух поверхностей) и блестяще решил ее.

Эйлер сделал следующее. Он нанес на поверхность шара мно­гогранник картиночку «стран», причем страны необязательно треугольные (рис. 30). (Если говорить о «странах», то надо по­мнить, что рассматривается «Земной шар», не содержащий морей и океанов.) При этом вся поверхность шара должна быть покрыта многоугольниками.

Перейти на страницу:

Похожие книги

Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука