Читаем Математика. Поиск истины. полностью

Известно, что при измерении пространственных и временной компонентов пространственно-временного интервала между двумя событиями различные наблюдатели могут получать разные результаты, но это не удивительно, если рассматривать трехмерное пространство само по себе. Два наблюдателя в различных точках земного шара видят одно и то же трехмерное пространство, но, основываясь на собственном опыте, каждый из них выделяет вертикальное и горизонтальное направления, отличные от вертикального и горизонтального направлений другого наблюдателя. Тем не менее мы продолжаем считать пространство трехмерным, а не рассматривать его как некую искусственную комбинацию протяженности по вертикали и горизонтали. Аналогичным образом различные наблюдатели могут по-разному разлагать пространство-время на пространственную и временную составляющие. Такое разложение столь же реально и необходимо для того, кто его производит, как и различие между горизонтальным и вертикальным направлениями для спускающегося по лестнице. Различие между тем и другим привносим мы, люди, — природа же предъявляет нам пространство и время не порознь, а вместе. В действительности в повседневной жизни мы иногда смешиваем пространство и время. Мы говорим, что звезда находится от нас на расстоянии стольких-то световых лет. Это означает, что звезда находится от нас на расстоянии, которое свет проходит за указанное время. Железнодорожное расписание также представляет собой комбинацию положения в пространстве и времени.

Эйнштейн развил идею Минковского о том, что Вселенную следует рассматривать как четырехмерный пространственно-временной мир, но эти поистине поразительные новшества специальной теории относительности Эйнштейна не позволили разрешить все трудности, перечисленные нами в предыдущей главе. По-прежнему не было никакой ясности относительно того, каким образом гравитация удерживает различные тела на поверхности Земли и планеты на их орбитах или почему в данной точке земного шара отношение массы и веса всегда должно быть постоянно.

Эйнштейн предпринял также попытку распространить специальную теорию относительности на такие системы отсчета, которые движутся относительно друг друга ускоренно.

Путеводная нить к более общему варианту теории относительности была найдена в 1907 г., когда Эйнштейн, размышляя над проблемами гравитации, осознал, что так называемая гравитационная масса неотличима от массы инерциальной. Что заставило ученых ввести различие между гравитационной и инерциальной массами? Согласно первому закону Ньютона, изменить состояние движения тела можно, приложив к нему силу. Если масса тела равна m, то, чтобы сообщить ему ускорение
a, нужно приложить (по второму закону Ньютона) силу F = ma.
Здесь m — инерциальная масса. Если мы стукнем кием по бильярдному шару на столе, приведя шар в движение, то ускоряемая масса есть масса инерциальная. Но если мы возьмем бильярдный шар в руку и выпустим его, то он упадет, поскольку масса Земли притягивает массу шара. В этом падении участвует уже гравитационная масса (вес). Совпадают ли инерциальная и гравитационная массы? Этот вопрос не беспокоил последователей Ньютона, но в связи с совершенно новыми проблемами, касающимися массы даже в специальной теории относительности, не мог не занимать Эйнштейна. И он пришел к следующему выводу: гравитационная масса эквивалентна инерциальной и гравитационная масса есть не что иное, как инерциальная масса в пространстве-времени совершенно нового типа.

Чтобы лучше понять ход рассуждений Эйнштейна, рассмотрим пример: пассажир свободно падающей (например, из-за обрыва троса) кабины лифта. В таком случае пассажир не испытывает действия силы тяжести. Действительно, он не давит на пол кабины и не имеет веса. Если, находясь внутри падающей кабины лифта, пассажир уронит носовой платок или наручные часы, то эти предметы будут падать. Но кабина также падает, поэтому и платок, и часы останутся (относительно кабины) в той точке пространства, где их выпустили. Внутри кабины лифта важна только инерциальная масса. Но для внешнего наблюдателя существует сила тяжести, действующая на кабину и находящиеся внутри нее предметы.

Обобщая, можно сказать, что все наблюдения, производимые локально над системой, на которую действует однородная статическая сила тяжести, будут такими, как если бы система двигалась равноускоренно. Ускорение и сила тяжести эквивалентны. В этом и состоит смысл сформулированного Эйнштейном принципа эквивалентности. Иначе говоря, этот принцип означает, что наблюдатель, падающий в гравитационном поле, будет испытывать то же, что и наблюдатель, находящийся в области пространства, полностью экранированной от гравитационного поля, если он движется с ускорением, равным ускорению свободного падения.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Путешествие по Карликании и Аль-Джебре
Путешествие по Карликании и Аль-Джебре

«Сказки да не сказки» — так авторы назвали свою книжку. Действие происходит в воображаемых математических странах Карликании и Аль-Джебре. Герои книги, школьники Таня, Сева и Олег, попадают в забавные приключения, знакомятся с основами алгебры, учатся решать уравнения первой степени.Эта книга впервые пришла к детям четверть века назад. Её первые читатели давно выросли. Многие из них благодаря ей стали настоящими математиками — таким увлекательным оказался для них мир чисел, с которым она знакомит.Надо надеяться, с тем же интересом прочтут её и нынешние школьники. «Путешествие по Карликании и Аль-Джебре» сулит им всевозможные дорожные приключения, а попутно — немало серьёзных сведений о математике, изложенных весело, изобретательно и доступно. Кроме того, с него начинается ряд других математических путешествий, о которых повествуют книги Владимира Лёвшина «Нулик-мореход», «Магистр рассеянных наук», а также написанные им в содружестве с Эмилией Александровой «Искатели необычайных автографов», «В лабиринте чисел», «Стол находок утерянных чисел».

Владимир Артурович Левшин , Эмилия Борисовна Александрова

Детская образовательная литература / Математика / Книги Для Детей / Образование и наука
Хаос и структура
Хаос и структура

"Все философско–математические и логические исследования, представленные в данном томе, созданы в 30—40–х годах, и ни одно из них не знало печатного станка при жизни автора. Работа, проделанная им на отрезке жизни вплоть до фатальной «Диалектики мифа», позволяла с уверенностью определять «трех китов», несущих, по Лосеву, весь груз мироустройства, — Имя, Миф, Число."Содержание тома можно условно разделить на две части. Первая посвящена философским вопросам математики и представлена книгой «Диалектические основы математики», вторая—философским вопросам логики, и ее образуют работы «О методе бесконечно–малых в логике» и «Некоторые элементарные размышления о логических основах исчисления бесконечно–малых». Завершает том небольшой фрагмент «Математика и диалектика». Работы второй части, безусловно представляя самостоятельный интерес, в то же время определенным образом восполняют утрату тех разделов «Диалектических основ математики», где должна была трактоваться содержательная сторона дифференциального и интегрального исчислений."

Алексей Федорович Лосев

Математика / Философия / Образование и наука