Основные уровни технологий представлены в табл. 5.12 в порядке возрастания их общественного значения и стадии реализации идеи. Переход от более низкого уровня реализации идеи к более высокому называется перемещением технологии. Для реализовавшихся важных идей характерно последовательное перемещение технологий от низшего до высшего уровня.
5.4.1. Модели прогнозирования
Модели технологического прогнозирования подразделяются на изыскательские (иногда их называют поисковыми) и нормативные.
В основе модели изыскательского прогнозирования лежит ориентация на предоставляющиеся возможности, установление тенденций развития ситуаций на базе имеющейся при разработке прогноза информации. Изыскательскому прогнозированию соответствует перемещение в пространстве технологий – от технологий более низкого уровня к технологиям более высокого уровня.
Примером изыскательского прогнозирования может служить прогнозирование в области электроники, когда прогнозируемый процесс представляют в виде последовательного перемещения технологий, начиная от квантовой электродинамики и кончая мгновенно осуществляемой всемирной связью.
В основе модели нормативного прогнозирования лежит ориентация на те потребности и цели, к достижению которых стремится организация. Нормативному прогнозированию соответствует перемещение в пространстве технологий – от технологий более высоких уровней к технологиям более низкого уровня.
Основные уровни технологий и стадии реализации идей
Примером использования модели нормативного прогнозирования может служить прогнозирование в области космоса, когда прогнозируемый процесс представляется в виде последовательного перемещения технологий от понимания проблемы космоса как среды, которая должна служить на благо человеку, до конкретных средств ее решения – условий для ядерного деления и количества высвобождающейся при этом энергии.
В рамках технологического прогнозирования решаются такие задачи, как разработка прогнозов в экономической и коммерческой, социальной и политической областях деятельности.
Одной из основных проблем при разработке прогнозов является эффективное сочетание методов изыскательского и нормативного про гнозирования.
Для модели изыскательского прогнозирования характерно использование методов, базирующихся на анализе точных эмпирических данных. К ним относятся:
• экстраполяция;
• моделирование;
• метод исторической аналогии;
• написание сценариев и т. д.
При этом предпочтение отдается количественной информации, хотя использование качественной (неколичественной) информации в изыскательском прогнозировании также возможно.
Примером является использование метода сценариев или метода экспертных кривых, позволяющих определять наметившиеся тенденции изменения ситуации не только на базе эмпирических данных, но и на опыте высококвалифицированных специалистов-экспертов.
К числу основных методов, используемых в моделях нормативного прогнозирования, следует отнести методы ПАТТЕРН, Делфи, прогнозного графа Глушкова, Поспелова и др. Такой широко используемый в настоящее время инструментарий, как деревья целей, впервые появился как составная часть метода ПАТТЕРН (обоснование планирования посредством научно-технической оценки количественных данных), разработанного в 1963 г. для нужд аэронавтики и космоса.
Среди других видов прогнозирования выделяют прогнозирование с использованием обратной связи, интуитивные методы, «обходные» и др. Но основные идеи, используемые при разработке прогнозов, достаточно полно представлены именно в моделях изыскательского, нормативного и экспертного прогнозирования.
В последние годы получили развитие модели экспертного прогнозирования, ориентированные в значительной степени на работу не только с количественной, но и с качественной информацией, получаемой непосредственно от экспертов.
По мнению Н.Н. Моисеева, развитие экспертного прогнозирования совпало по времени с активным развитием ЭВМ. Последний факт нашел отражение в практике экспертного прогнозирования [17, 24].
5.4.2. Технологии прогнозирования
Одной из основных технологий, используемых в моделях изыскательского прогнозирования, является экстраполяция временных рядов – статистических данных об объекте прогнозирования.
В основе экстраполяционных технологий лежит предположение, что динамика изменений, имевшая место в прошлом, сохранится и в будущем. При этом, естественно, должны быть сделаны поправки с учетом стадии жизненного цикла объекта.
Для расчета кривых, отражающих изменение прогнозируемых параметров, в ряде распространенных ситуаций прогнозирования используется экспонента, т. е. функция вида
где
К числу наиболее известных экспоненциальных кривых, используемых при прогнозировании [15], можно отнести кривую Перла, имеющую вид
где