Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

Скольким из этих способов отвечают три различных номера? Если для красной кости имеется 6 вариантов, то для зеленой уже только 5, так как номер, выпавший на красной кости, не должен повториться. Зеленая кость может выпасть по аналогичным соображениям лишь одной из четырех граней, отличных от предыдущих. Итак, всего существует 6·5·4 = 120 возможных вариантов.

Оставим на время второй случай и перейдем к рассмотрению третьего — когда выпадает три одинаковых номера. Число таких вариантов равно 6, так как красная кость может выпасть шестью различными способами, зеленая же и синяя только одним, а именно тем, которым выпала красная.

Это означает, что существует 216 − 126 = 90 комбинаций, при которых выпадает ровно два одинаковых номера. В этом, впрочем, можно убедиться и непосредственно. Возможны следующие сочетания костей с одинаковыми номерами: красно-зеленая, красно-синяя и зелено-синяя. Для нахождения общего числа комбинаций определим число возможных вариантов, скажем, для сочетания красно-зеленая, и умножим его на три. Красная кость может выпасть шестью способами, зеленая — только одним и синяя — пятью, т. е. всего существует 30 таких вариантов. Окончательный результат 3·30 = 90 совпадает с почученным ранее.

Средний ущерб получается суммированием произведений вероятностей отдельных случаев на ущерб, им соответствующий:

120/216 · 0 + 90/216 · 1/6 + 6/216 · 2/6 = 17/216 ≈ 0.079[5].

Итак, в среднем игрок теряет 8 % своей ставки. Учитывая, что игра продолжается около 30 секунд, а по государственным облигациям выплачивается менее 4 % доли прибыли за год, такую игру можно назвать чудовищно несправедливой.

Проведенные расчеты верны лишь для правильных костей. Иногда вместо костей употребляется крутящееся колесо со стрелкой, которое после остановки показывает на участок окружности, отвечающий определенной комбинации из трех цифр. При этом относительные длины этих участков плохо согласуются с вероятностями появления соответствующих комбинаций при подбрасывании костей. Наблюдения показывают, что для таких колес двух- и трехкратные выплаты встречаются чаще и, значит, средний ущерб еще больше.

7. Решение задачи о переубеждении упрямого игрока

Если Браун выиграет хоть один раз за 36 игр, он не потерпит убытка. Вероятность проиграть все 36 раз равна

Математическое ожидание выигрыша в одной игре есть

а в 36 играх:

При игре против благожелательного друга математическое ожидание выигрыша Брауна равно

20·0.617 − 20·0.383 = 4.68.

В итоге Браун в среднем получит 4.68 − 1.89 = 2.79 доллара за 36 игр и будет в выигрыше. Возможно, доброжелательный друг будет сам переубежден. Разумеется, если Браун проиграет все 36 игр, то потеряет 56 долларов, что весьма неприятно.

8. Решение задачи о «масти» при игре в бридж

Эта вероятность ничтожно мала. Так как колода хорошо перетасована, можно считать, что 13 карт сняты сверху. Для получения 13 карт одной масти нужно, вытащив сначала любую из 52 карт, извлечь затем все карты той же масти (которых всего 13 штук). Итак, число способов получения «масти» равно

52·12·11·10·9·8·7·6·5·4·3·2·1 = 52·12!

Общее же число способов извлечения 13 карт из 52 равно

52·51·50·49·48·47·46·45·44·43·42·41·40 = 52!/39!

Искомая вероятность равна 52·12!/(52!/36!) = 12!·39!/51! Обратная величина может трактоваться как среднее число игр до появления «масти».

Из таблиц[6] находим:

lg 12! = 8.68034,     lg 51! = 66.19065,

lg 39! = 46.30959,     lg (12!·39!) = 54.98993,

lg (12!·39!) = 54.98993,     lg(12!·39!/51!) = 11.20072,

12!·39!/51! = 1.588·10−11.

При вычислениях такого рода точный ответ часто приводит в замешательство. Что из того, что в одном из 160 миллиардов случаев имеется возможность получить «масть»? Сколь часто должны мы были бы слышать о таком событии? Явно завышая числа, предположим, что в США в бридж играют 10 миллионов, и что каждый игрок играет 10 раз всякий день в году. Это дает 36½ миллиардов игр в год, так что исключительную сдачу можно ожидать один раз в 4 года (причем о некоторых из них заведомо не будет объявлено публично). Даже в два раза большее количество игроков, которые играют к тому же в два раза чаще, привело бы лишь к одной такой сдаче в течение года.

Чем можно объяснить значительную большую частоту сообщений о появлении «масти»? Многими причинами, среди которых следует назвать склеивание карт и плохое тасование. (Нашумевший случай «масти», действительно имевший место, произошел при первой раздаче новой колоды.)

Несомненно также, что некоторые репортеры стали жертвами шуток и мистификаций. Если вы подстроили своей бабушке «масть» в день ее рождения и хотите потом сознаться в этом, то вы, наверное, все же промолчите, после того как об этом исключительном событии будут оповещены все родственники, друзья и. репортеры. С другой стороны, ввиду внимания к столь редким явлениям, кажется неправдоподобным, чтобы такую комбинацию подстраивали шулера.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии