Читаем Пятьдесят занимательных вероятностных задач с решениями полностью

Здесь мы существенным образом использовали тот факт, что математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых. Мы нашли среднее число пар BM или MB для каждых двух смежных мест и просуммировали по всем таким двойкам.

16. Рещение задачи о распределении призовых мест

Ответ равен 4/7. Второй по мастерству игрок может занять второе место лишь в том случае, когда он находится в половине турнирной лестницы, не занимаемой лучшим игроком.

Если в турнире участвуют 2n игроков, то в половине турнирной лестницы, не занимаемой лучшим игроком, 2n − 1 начальных ступеней, а всего имеется 2n − 1 начальных ступеней (кроме занятой лучшим игроком). Таким образом, в турнире с 2n игроками второй по мастерству может с вероятностью 2n − 1/(2n

− 1) занять второе место.

17. Решение задачи о рыцарях-близнецах

(а). Обозначим близнецов через A к B. Пусть A занимает высшую ступень турнирной лестницы. Если B занимает смежное место, что происходит с вероятностью 1/7, то они заведомо встретятся в первом туре. Вероятность того, что B находится в паре, соседней с парой A, равна 4/7, и вероятность того, что они встретятся в этом случае, равна 1/7, так как для осуществления этого события каждый должен победить в первом поединке. Наконец, вероятность того, что B находится в нижней половине, равна 4/7, и в этом случае вероятность встречи равна 1/24 = 1/16, так как оба должны выиграть в двух турах. Таким образом, полная вероятность встречи равна

(б). Заметим, что в турнире двух рыцарей близнецы заведомо встретятся. При 2² = 4 участниках вероятность такого поединка равна ½, для случая 2³ = 8 рыцарей, как уже было подсчитано, вероятность равна 1/4 = 1/2n

. Кажется естественным предположить, что в турнире 2n рыцарей искомая вероятность равна 1/2n − 1.

Докажем справедливость этого предположения с помощью метода математической индукции. Рассмотрим сначала случай, когда рыцари находятся в разных половинах турнирной лестницы. Как известно из задачи о теннисных турнирах, эта вероятность равна 2n − 1/(2n − 1). Если A и B находятся в разных половинах турнирной лестницы, то они могут встретиться лишь в финальном поединке. Вероятность выйти в финал для каждого рыцаря есть 1/2n − 1, так как для осуществления этого события необходимо выиграть во всех предыдущих турах. Вероятность того, что A и B достигнут финала, равна (1/2n

− 1)² = 1/22n − 2. Итак, вероятность встречи рыцарей из разных половин таблицы равна

[2n − 1/(2n − 1)]·(1/2n − 2).

К этой вероятности следует прибавить вероятность поединка близнецов, которые оказались записанными в одну и ту же половину таблицы. Вероятность последнего события равна (2n − 1 − 1)/(2n − 1), и, согласно индукционному предположению, вероятность схватки между близнецами в турнире из n − 1 тура равна 1/2n − 2. Итак, вероятность встречи равна

что и доказывает наше утверждение.

18. Решение задачи о равновесии при бросании монет

Расположим 100 монет в ряд слева направо и будем бросать каждую. Вероятность какой-то заданной последовательности, составленной из 100 гербов и решек, равна (1/2)100 в силу независимости испытаний. Например, вероятность того, что вначале выпадет 50 гербов и затем 50 решек, равна (1/2)100. Сколькими способами можно расположить 50 гербов и 50 решек в строку? В решении задачи 8 мы видели, что это число равно соответствующему биномиальному коэффициенту. Мы получаем

Следовательно, вероятность равного числа гербов и решек равна

Используя таблицы, получаем 0.07959 ≈ 0,08.

Формула Стирлинга

Для расчета больших значений факториалов часто пользуются формулой Стирлинга

где e — основание натуральных логарифмов. Относительная погрешность этой формулы приблизительно равна 100/(12n) %. Применим формулу Стирлинга к расчету вероятности равновесия

Так как 1/√2π ≈ 0.4, то наша приближенная формула дает 0.08, как и раньше. Более точное приближение с точностью до четвертого знака дает 0.0798 вместо 0.0796. Вывод формулы Стирлинга имеется в любом учебнике по дифференциальному и интегральному исчислению.

19. Решение задачи Сэмуэля Пепайса

Когда-то Сэмуэль Пепайс послал Ньютону длинное и запутанное письмо по поводу новых игр с костями, которые он собирался опробовать. Для выяснения, какая из них выгоднее, Пепайсу нужен был ответ на сформулированный в условии задачи вопрос. Детали истории можно найти, например, в статье «Samuel Pepys, Isaac Newton and Probability», в журнале «American Statistician», Vol. 14, № 4, Oct., 1960. На эту тему есть и другая литература. Насколько я знаю, решение этой задачи — единственная работа Ньютона по теории вероятностей.

Перейти на страницу:

Похожие книги

Простая одержимость
Простая одержимость

Сколько имеется простых чисел, не превышающих 20? Их восемь: 2, 3, 5, 7, 11, 13, 17 и 19. А сколько простых чисел, не превышающих миллиона? Миллиарда? Существует ли общая формула, которая могла бы избавить нас от прямого пересчета? Догадка, выдвинутая по этому поводу немецким математиком Бернхардом Риманом в 1859 году, для многих поколений ученых стала навязчивой идеей: изящная, интуитивно понятная и при этом совершенно недоказуемая, она остается одной из величайших нерешенных задач в современной математике. Неслучайно Математический Институт Клея включил гипотезу Римана в число семи «проблем тысячелетия», за решение каждой из которых установлена награда в один миллион долларов. Популярная и остроумная книга американского математика и публициста Джона Дербишира рассказывает о многочисленных попытках доказать (или опровергнуть) гипотезу Римана, предпринимавшихся за последние сто пятьдесят лет, а также о судьбах людей, одержимых этой задачей.

Джон Дербишир

Математика
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии