Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Суммируя обсуждение в этом и предыдущем параграфах, отметим следующее. QFT покоится на двух китах указанных в 1) и 2). То что 1) не является фундаментальным физическим требованием, отмечено в предыдущем параграфе, а в этом параграфе объяснено, что понятие квантованных полей на background space тоже не является фундаментальным. Понятие background space возникло из классической теории поля, а для квантованных полей оно не имеет физического смысла так как аргумент x в квантованных полях не относится к какой-либо частице и поэтому не имеет физического смысла. Нет физического закона, что S-матрица обязательно должна определяться интегралами по d4

x от квантованных полей Ψ(x
). Исторически сложилось так, что QFT с такими интегралами хорошо описывает многие экспериментальные данные, но, как описано ниже, такая теория также имеет фундаментальные проблемы. Поэтому нет причин думать, что ultimate quantum theory будет основана на QFT. Этот вопрос обсуждается в следующем параграфе.

9.7. Успехи и проблемы QFT

Как объяснено выше, теория основанная на 1) и 2) не может быть фундаментальной. Но, кроме этой проблемы, в QFT возникает следующая. Теория основана на локальных квантованных полях, которые перемножаются в одной точке. Как правило, физиков не волнует то, что, как отмечено, например, в книге Боголюбова с соавторами [6], Ψ(x

) является обобщенной функцией, а, как известно из теории таких функций, их нельзя перемножать в одной точке. Но многие физики об этом даже не задумываются и перемножают, чтобы, как они думают, сохранить локальность, хотя, как отмечено выше, x не относится к какой-либо частице и поэтому не имеет физического смысла. В результате получаются плохо определенные выражения, аномалии и расходимости с которыми борются. То есть, сами создали проблемы и теперь с ними борются.

Можно сказать, что идеальная наука не должна исходить из такой математики. Но здесь возникает убийственный аргумент: с такой математикой теоретический результат для магнитных моментов электрона и мюона согласуется с экспериментом с точностью 8 знаков, Лэмбовский сдвиг – с точностью 5 знаков и т.д. Ни в какой области науки такого согласия теории и эксперимента нет.

Эти результаты были получены в квантовой электродинамике (которую в физической литературе называют QED – quantum electrodynamics) в конце 40х годов, и те, кто ее сделали (Feynman, Schwinger, Tomonaga, Bethe, Karplus, Klein, Kroll, Sommerfield и др.) производят впечатление даже не людей, а сверхчеловеков. Но все же, хотя история не знает сослагательного наклонения, позволю себе задать крамольный вопрос: то, что эти потрясающие результаты были получены оказалось хорошо для науки или нет? Во-первых, эти результаты сразу убедили многих, что строгая математика ни к чему, а главное – чтобы хорошо описывался эксперимент. Во-вторых, многие решили, что теперь вся релятивистская квантовая теория может быть сделана по аналогии с QED. Однако, несмотря на потрясающее согласие с экспериментом, эти результаты вряд ли можно считать фундаментальными. Они получены, исходя из того, что постоянная тонкой структуры α мала (она примерно равна 1/137). Поэтому можно применять теорию возмущений по α. Результат для аномальных моментов электрона и мюона получается при учете поправок вплоть до α3 включительно. Но в теориях, где константа взаимодействия большая, надо или работать без теории возмущений или вычислять весь ряд теории возмущений, что нереалистично (и к тому же непонятно, сходится ряд или нет).

После такого триумфа физики пытались рассмотреть другие теории по аналогии. В предыдущем параграфе я отметил проблемы с классическим и квантовым полем Ψ(x), с интерпретацией аргумента этой функции, с уравнением Дирака и т.д. К концу 60х годов возникло мнение, что надо что-то менять. Weiskopf написал, что квантовая теория поля должна быть похоронена со всеми почестями. В 1968 г. вышел 4й том Курса Теоретической Физики, который написали Берестецкий, Лифшиц и Питаевский. В вводной главе они объяснили, что, если объединить квантовую теорию с релятивизмом, то даже координата сама по себе не может быть точно измерена, а в главе II написали: "Следует подчеркнуть вспомогательный характер понятия поля свободных частиц".

Но, несмотря на эти проблемы, QFT восстала из пепла: в 70х годах создали квантовую хромодинамику, в 1981м нашли W и Z бозоны и, наконец, создали Стандартную Модель. В ней, исходя из 20 параметров, описывают многие экспериментальные данные из физики частиц. Модель не решила ни одной принципиальной проблемы QFT. Она по-прежнему исходит из лагранжиана, в котором поля перемножаются в одной точке. Еще когда я учился в ИТЭФе, все знали крылатую фразу К. А. Тер-Мартиросяна, что если теория содержит 25 свободных параметров и описывает 1000 экспериментальных данных, то это хорошая теория. Так что в такой философии Стандартная Модель – большое достижение.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии