Читаем Популярно о конечной математике и ее интересных применениях в квантовой теории полностью

Но в QFT рассматривается также описание частиц при помощи полевых функций Ψ(x)= Ψ(t,x) удовлетворяющих ковариантным уравнениям (Дирака, Клейна-Гордона и др.) на пространстве Минковского. Такие функции возникают из неунитарных представлений группы Пуанкаре индуцированных из неунитарных представлений группы Лоренца, а зависимость таких функций от (t,x) возникает из-за того, что пространство Минковского является фактор-пространством группы Пуанкаре по группе Лоренца. В связи с тем, что такие представления неунитарны, возникает проблема с их вероятностной интерпретацией.

Паули показал, что для уравнений, описывающих поля с полуцелым спином, нет инвариантных подпространств в которых для всех состояний знак энергии одинаковый, а для уравнений, описывающих поля с целым спином нет инвариантных подпространств в которых для всех состояний знак заряда одинаковый. Поэтому неквантованные поля описывающие частицы не имеют физического смысла. Кроме того, так как для полей Ψ(x) нет вероятностной интерпретации, то координаты x не являются операторами каких-либо физических величин. Большой успех уравнения Дирака в том, что в приближении (v/c)2 уравнение описывает с большой точностью тонкие уровни атома водорода. Но, в более высоких приближениях оно не работает. Например, оно не может описать Лэмбовский сдвиг.

Большим событием в физике частиц был результат Дирака, что его уравнение имеет решение как с положительными так и с отрицательными энергиями. Этот факт интерпретировался как существование античастиц и действительно, вскоре был найден позитрон. Но здесь возникают такие противоречия.

Если m – масса частицы, а p – ее импульс, то энергия определяется как ω(p)=(m2+p2

)1/2, причем, с чисто формальной точки зрения, знак корня может быть как положительным так и отрицательным. Но этот знак должен быть одинаковым для всех частиц. Действительно, рассмотрим систему двух частиц, у которых массы одинаковые, а импульсы p1 и p2 такие, что p
1+p2=0. Тогда, если для одной частицы корень взят со знаком плюс, а для другой со знаком минус, то полный 4-импульс системы будет равен нулю, что противоречит эксперименту.

Другим противоречием является следующее. Так как уравнение Дирака линейное, то суперпозиция решений с положительными и отрицательными энергиями тоже является решением, и это соответствует принципу суперпозиции в квантовой теории. Но из требования сохранения заряда, следует, что суперпозиция электронных и позитронных состояний запрещена.

Эти противоречия решают при помощи вторичного квантования. Но тогда возникает такая проблема. Квантованное поле Ψ(x) является оператором в Фоковском пространстве состоящим из бесконечного числа частиц. Каждая частица имеют свои координаты (в приближении когда операторы таких координат существуют). Поэтому аргумент функции Ψ(x) не относится ни к какой частице, это просто чисто формальный параметр возникший из вторичного квантования неквантованного поля Ψ(x). Поэтому аргумент даже нельзя назвать координатой, это просто параметр интегрирования когда лагранжиан записывается как интеграл от полей. То есть в квантовом случае аргумент не имеет физического смысла. Но все равно физики думают, что аргумент имеет смысл координаты (правда, непонятно чего).

В QFT, полевые функции Ψ(x) входят только в интегралы от Лагранжиана по d4

x для S-матрицы, то есть x – это только параметр интегрирования и нет физических величин зависящих от x. Цель QFT – вычислить S-матрицу в импульсном представлении, и все наблюдаемые величины в QFT определяются S-матрицей. Когда S-матрица вычислена, мы можем забыть про x. Это соответствует S-матричной программе Гайзенберга, что в квантовой теории нельзя описывать состояния в каждый момент времени t, а смысл имеет только описание преобразования от бесконечно далекого прошлого t→-∞ до бесконечно далекого будущего t→+∞. Тот факт, что S-матрица вычисляется в импульсном представлении, не означает, что в QFT не может быть координатного описания. Оно имеется в приближении когда для каждой частицы имеется оператор координаты в импульсном представлении.

Перейти на страницу:

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное
Прикладные аспекты аварийных выбросов в атмосферу
Прикладные аспекты аварийных выбросов в атмосферу

Книга посвящена проблемам загрязнения окружающей среды при авариях промышленных предприятий и объектов разного профиля и имеет, в основном, обзорный справочный характер.Изучается динамика аварийных турбулентных выбросов при наличии атмосферной диффузии, характер расширения турбулентных струйных потоков, их сопротивление в сносящем ветре, эволюция выбросов в реальной атмосфере при наличии инверсионных задерживающих слоев.Классифицируются и анализируются возможные аварии с выбросами в атмосферу загрязняющих и токсичных веществ в газообразной, жидкой или твердой фазах, приводятся факторы аварийных рисков.Рассмотрены аварии, связанные с выбросами токсикантов в атмосферу, описаны математические модели аварийных выбросов. Показано, что все многообразие антропогенных источников загрязнения атмосферного воздуха при авариях условно может быть разбито на отдельные классы по типу возникших выбросов и характеру движения их вещества. В качестве источников загрязнений рассмотрены пожары, взрывы и токсичные выбросы. Эти источники в зависимости от специфики подачи рабочего тела в окружающее пространство формируют атмосферные выбросы в виде выпадающих на поверхность земли твердых или жидких частиц, струй, терминов и клубов, разлитий, испарительных объемов и тепловых колонок. Рассмотрены экологические опасности выбросов при авариях и в быту.Книга содержит большой иллюстративный материал в виде таблиц, графиков, рисунков и фотографий, который помогает читателю разобраться в обсуждаемых вопросах. Она адресована широкому кругу людей, чей род деятельности связан преимущественно с природоохранной тематикой: инженерам, научным работникам, учащимся и всем тем, кто интересуется экологической и природозащитной тематикой.

Вадим Иванович Романов

Математика / Экология / Прочая справочная литература / Образование и наука / Словари и Энциклопедии