17.10.
При каких значениях параметраимеет 2 различных целых корня?
17.11.
В зависимости от17.12.
При каких значениях параметра2(2
имеет ровно восемь решений на отрезке [-, ]?
17.13.
На плоскости (где
Глава 18
Задачи на составление уравнений
При решении задач на составление уравнений основную трудность представляет перевод условия задачи с обычного языка на язык математических символов и уравнений. Наиболее ответственный этап этого процесса — выбор неизвестных. Нельзя шаблонно выбирать в качестве неизвестных величины, стоящие в вопросе задачи. Основное требование, которому должны отвечать выбранные неизвестные, состоит в том, чтобы с их помощью можно было прозрачно записать сформулированные в условии задачи соотношения.
Разберем в качестве примера следующую задачу.
Пример 1.
Трое рабочих должны изготовить некоторое число деталей. Сначала к работе приступил первый, а через некотороевремя к нему присоединился второй. Когда 1
/6 работы была выполнена, к работе приступил третий. Работу они закончили одновременно. Сколько времени работал первый рабочий, если каждый изготовил одинаковое число деталей, причем третий работал на 2 ч меньше второго? Известно, что первый и второй, работая вместе, могут изготовить требуемое число деталей на 9 ч раньше, чем третий, если бы он работал один.Известно, что каждый рабочий изготовил одинаковое число деталей, т. е. выполнил треть всей работы. С другой стороны, нет никаких сведений о числе деталей, изготовленных кем-либо в какой-либо промежуток времени. Это означает, что речь идет о работе «вообще», о том, что каждый выполнял какую-то часть этой работы, а потому всю работу следует принять за единицу. Ту же мысль подтверждает и условие, в силу которого третий рабочий приступил к работе, когда 1
/6 работы (обратите внимание: 1/6 всей работы, а не 45 или 27 деталей) была уже выполнена.Из условия следует, что рабочие работают по-разному, другими словами, они изготовляют разное число деталей за одно и то же время. Поэтому нужно ввести в рассмотрение производительность каждого из них. Однако через
После всего сказанного должно быть очевидным, что мы легко перепишем условие задачи в виде системы уравнений, если введем в рассмотрение еще три неизвестные:
Мы получили три уравнения (их можно было написать в виде
которое должно отражать то обстоятельство, что в итоге вся работа была выполнена. Однако это уравнение не содержит никакой самостоятельной информации: оно является следствием первых трех и получается в результате их сложения. Поэтому последнее уравнение, хотя и верно составлено, но бесполезно для решения задачи.
Так как первый и второй рабочие вместе выполняют всю работу за 1
/1
/Составим теперь уравнение, отражающее тот факт, что третий рабочий приступил к работе, когда ее 1
/6 была выполнена. Другими словами, когда первый проработалДобавляя к этим пяти уравнениям шестое:
мы можем приступить к решению полученной системы уравнений.
Решая систему уравнений, как правило, следует держать в поле зрения два обстоятельства. Во-первых, систему уравнений нужно воспринимать в целом, так, как вы воспринимали бы ее, решая вне связи с задачей. Это позволит найти более рациональный ключ к ее решению. Во-вторых, нельзя упустить из виду те неизвестные (или комбинации неизвестных), которые позволят ответить на вопрос задачи. Благодаря этому можно обойтись без излишних вычислений.
В нашем примере второе обстоятельство должно побудить нас использовать уравнение (4) для упрощения уравнения (3), в результате чего из (3) будет исключено неизвестное