Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

18.12. Чтобы вычислить расстояние между пунктами первой и второй встречи, нужно сначала определить время между этими двумя встречами, т. е. разделить длину отрезка между пунктом первой встречи и пунктом B на сумму скоростей. Полученное выражение нужно умножить на скорость автомобиля. B результате получим уравнение

Два уравнения, в которых используются оставшиеся условия задачи, составить нетрудно. Одно из них будет линейным, а другое — уравнением второй степени.

Решение системы трех уравнений рациональнее начать с решения относительно x/y полученного выше уравнения.

18.13. Стоимость автобусного билета А может быть использована только для того, чтобы определить расстояние до встречи с поездом, которое пассажиру пришлось бы проехать на такси. Эта поездка обошлась бы ему в (Аax - B) p. и пройденное машиной расстояние составило бы

Условие задачи позволяет составить три уравнения, приравнивая различные выражения для одинаковых отрезков времени: а) время, которое заняла поездка сначала на такси, а затем на автобусе, равно времени, за которое поезд прошел тот же путь за вычетом t; б) если бы пассажир догонял поезд на такси, то догнал бы его на расстоянии x + АB/a км; в) остается использовать разность времен, которые входят в а) и б), и приравнять ее .

18.14. Условия задачи позволяют составить два уравнения, которые получатся в результате сравнения времени, за которое каждый поезд проходит весь путь без остановки, с временем, за которое поезд проходит этот же путь с остановкой и последующим увеличением скорости. (!!)

Прежде чем решать полученную систему двух уравнений с двумя неизвестными, нужно выразить через введенные неизвестные и ту величину, которая нас интересует.

18.15. Для решения задачи нам понадобятся два уравнения, которые мы получим, приравнивая промежутки времени до первой и второй встреч. Тот факт, что самолет вернулся в А, а вертолет прилетел в B, мы используем после того, как определим их скорости. Это позволит нам вычислить нужные отрезки времени для ответа на вопрос задачи.

18.16. Составить два уравнения относительно x и y нетрудно. Достаточно записать, чему равно время на путь от M до N и на путь от N до M, и вспомнить, что обе эти величины известны.

18.17. Данные в условии ограничения записать в виде системы неравенств и решить эту систему.

18.18. После того как заказчик выяснил, что выгоднее всего заказывать комплекты по 40 деталей, а наименее выгодны комплекты по 70 деталей, он должен позаботиться о том, чтобы общая сумма деталей равнялась 1100. При этом он будет стремиться заказать как можно больше дешевых комплектов и как можно меньше самых дорогих.

К главе 19

19.1. Свести задачу к сравнению (n + 1/n)n и числа 2.

19.2. Нужно использовать условие, в силу которого ар, aq, аr и as образуют геометрическую прогрессию. Это удобнее сделать так: a^2q = араr и т. п. (!!)

Остается выразить p - q, qr и r - s через ар, aq, аr и as и убедиться, что (p - q)(r - s) = (q

- r)^2.

19.3. При составлении разностей а - b, b - с и с - а удобнее пользоваться представлением чисел a, b и с с помощью арифметической прогрессии.

19.4. Воспользоваться тем, что logx b/a = logx с/b (числа a, b, с образуют геометрическую прогрессию).

19.5. Вынести за скобки 7/9.

19.6. Под знаком квадратного корня стоит полный квадрат 1/9(102n - 2 · 10n + 1).

19.7. После исключения получим уравнение относительно а1 и а3, из которого следует, что а1 = а3.

Так как а1 = а3, то  Рассмотрите систему: а1 = а2, а2 = а3.

19.9. Теорема Виета, записанная для данного уравнения, приведет к системе уравнений относительно x1 и q (уравнение, в которое входит а, можно не рассматривать). Удобнее найти сначала q.

19.10. Записать произведение n первых членов и воспользоваться тем, что а1 = 2.

19.11. Если цифру сотен обозначить через а, а разность прогрессии — через d, то число делится на 5, когда либо а + 2d

= 0, либо а + 2d = 5; оно же делится на 9, если а + (а + d) + (а + 2d) делится на 9. Остается воспользоваться тем, что а, а + d и а + 2d — цифры.

19.13. B задаче спрашивается, сколько комбайнов было в колхозе. Эту величину мы обозначим через n. Условия задачи позволяют составить три уравнения. При этом левая часть уравнения, соответствующего работе по плану, представляет собой сумму членов арифметической прогрессии. (!!)

При решении системы уравнений нужно исключить x и y.

19.14. При решении уравнений нужно иметь в виду, что нас интересуют только а и q.

19.15. Двух уравнений достаточно для решения задачи, так как нас интересуют не сами числа а, b и с, а отношение каких-либо двух из них. Поскольку полученные результаты использования условий задачи уравнения однородны относительно а, b и с, то определить интересующую нас величину нетрудно.

19.16. Так как предел ( 1/4 )n при n ->  равен нулю, то аn и bn имеют общий предел.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже