Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Если а ≠ −1, то, найдя x³ из первого и второго уравнений, приравняем полученные выражения

½(а + 1) = 1/2 − a, т. е. а² − а = 0,

откуда а = 0 или а = 1.

Условию задачи могут удовлетворить только три значения параметра а:

−1, 0, 1,

которые нужно проверить.

Если а = −1, то из первого уравнения найдем y = −x, а из второго уравнения найдем x³ = ⅓ и , а следовательно,  Найденные значения неизвестных удовлетворяют и условию x + y = 0.

Если а = 0, то из первого уравнения:  а из второго:  Это значит, что при а = 0 система имеет два решения:

По условию любое решение должно удовлетворять требованию x + y = 0, между тем первое решение этому требованию не удовлетворяет. Значение а = 0 мы должны отбросить.

Осталось рассмотреть случай, когда а = 1. B этом случае получим систему

Так как правые части отличны от нуля, то разделим первое уравнение на второе, откуда x + y = 0. Поскольку условие x + y = 0 теперь автоматически выполняется для любого решения системы, то нужно убедиться, что y этой системы есть хотя бы одно решение. Таким решением является x = 1, y = −1. (Докажите.)

Ответ. ±1.

9.32. Так как система должна иметь хотя бы одно решение при любом b, то она должна иметь решение и при b = 0. Положив b = 0, получим систему

Первое уравнение удовлетворяется либо при а = 0 и любом x, либо при x = 0. Если x = 0, то из второго уравнения получаем

а = 1. Итак, возможны только два значения: а = 0 и а = 1.

При а = 0 получаем систему

Первое уравнение имеет решение при любом b, только если y = 0. Однако это значение y не удовлетворяет второму уравнению.

Остается рассмотреть случай а = 1. Система примет вид

При любом b эта система имеет решение x = y = 0.

Ответ. 1.

9.33. Пусть (х1, у1) — решение системы. Тогда второе уравнение удовлетворяется еще тремя парами значений неизвестных (−x1, y1), (x1, −y1), (−x1, −y1). Легко убедиться, что первое уравнение наряду с (x1, y1) имеет также решение (x1, −y1):

Таким образом, система может иметь единственное решение лишь при условии, что y1 = −y1

, т. е. y = 0. Подставим это значение y в систему. Из первого уравнения получим а = 0.

Выясним, достаточно ли условия а = 0 для единственности решения исходной системы. Если а = 0, то xy = 1, а это означает, что либо x = 1, y — любое число, либо ≠ 0 — любое, y = 0. Значения параметра b должны быть такими, чтобы второму уравнению системы удовлетворяло только одно из решений первого. Если y = 0, то второе уравнение имеет единственное решение x = √b (по условию x > 0) при любом b > 0. Поэтому b нужно выбрать таким, чтобы исключить случай x = 1, т. е. таким, чтобы уравнение 1 + y² = b не имело действительных решений. Для этого необходимо и достаточно выполнение ограничения b < 1.

Если x = 1, то второе уравнение имеет единственное решение в том и только в том случае, если b = 1. При этом ему удовлетворяет единственное из решений первого уравнения: x = 1, y = 0.

Ответ.а = 0, 0 < b ≤ 1.

9.34. Умножим числитель и знаменатель дроби из второго уравнения на  Полученное уравнение разделим на y, который тоже отличен от нуля, если входит в решение системы. Получим  Исключим  с помощью первого уравнения системы:

x²/y² − 2x/y + y² + 2x − 2y = 3.

Последнее уравнение перепишем в виде

x²/y² + 2x + y² − 2(x/y + y) = 3

Если x + y = z, то z² − 2z − 3 = 0, z1 = −1, z2 = 3. Первое уравнение данной системы можно записать в виде

Если  откуда x = 0. Второе уравнение системы дает тогда два значения: y1 = 0, y2 = −1, где y = 0 не удовлетворяет первому уравнению. Если z = 3, то x = 4/3; второе уравнение системы после несложных преобразований принимает вид 3y²+ y + 4 = 0, т. е. не имеет действительных решений.

Проверка убеждает нас в том, что x = 0, y = −1 — единственное решение системы.

Ответ. (0, −1).

9.35. Запишем данное уравнение в виде

|6 − |x − 3| − |x + 1|| = а(x + 5) + 4.    (10)

Построим график функции

= |6 − |x − 3| − |x + 1||.    (11)

Начнем с графика функции

y = 6 − |x − 3| − |x + 1|,    (12)

который легко построить, разбив числовую ось на три интервала точками x = −1, x = 3 (рис. P.9.35).

Получим

Этот график совпадает с графиком функции (11) там, где значения y, полученные из (13), неотрицательны. Если же значения y, полученные из (13), отрицательны, то им соответствуют симметричные относительно оси Ox точки графика. Таким образом, для интервала −2 ≤ x ≤ 4 графики функций (11) и (12) совпадают, а при x < −2 и при x > 4 мы получаем симметричные относительно оси Ox лучи. В итоге для функции (11) имеем:

График этой функции изображен на рис. P.9.35 жирной линией (около каждого отрезка указан номер соответствующего ему уравнения).

Если подойти к задаче формально, то мы можем рассчитать точки пересечения прямой (19) — см. ниже — с каждой из прямых (14), (15), (16), (17), (18). Получим соответственно:

x1 = −5a + 8/a + 2, x2 = 5a/2 − a, x3 = −5a + 2/a, x4  = 4 − 5a/a + 2, x5 = 5a + 12/2 − a.

Рассмотрим теперь при разных значениях параметра а семейство прямых

y = а(+ 5) + 4     (19)

и определим, сколько точек пересечения y каждой из прямых (19) с графиком функции (13).

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература