Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Так как уравнения, которым удовлетворяют x, y и z, симметричны, то аналогичные ограничения получим для y и z:

1 ≤ y7/3, 1 ≤ z7/3,

что и требовалось доказать.

10.14. Дискриминант квадратного трехчлена равен 1 − 4а. Если а < ¼, то дискриминант положителен и уравнение ax² + x + 1 = 0 имеет два различных корня:

Когда а > 0, т. е. 0 < а < ¼, то получим решения неравенства:

x < x1, x > x2.

Когда а < 0, то легко проверить, что x2 < x1. Поэтому решения запишутся в виде

x2 <

x < x1.

Дискриминант отрицателен, когда а > ¼, а следовательно, а > 0. Неравенство удовлетворяется при всех x.

Если а = ¼, то решения неравенства запишутся в виде x ≠ −2.

10.15. Условия задачи выполняются тогда и только тогда, когда интервал 1 < x < 2 будет расположен между корнями параболы, т. е. если

Подставляя значения 1 и 2 в данный трехчлен, получим систему двух квадратных неравенств

Решая первое неравенство, найдем

−7 − 3√5/2m−7 + 3√5/2,

а решая второе, получим

−4 − 2√3 ≤ m ≤ −4 + 2√3.

Ответ. −½(7 + 3√5) ≤ m ≤ −4 + 2√3.

10.16. Пусть x1 и x2 — корни данного трехчлена. Тогда

Если корни x1 и x2 действительны, то из первой формулы следует, что они не могут быть оба положительными. Если оба корня отрицательны, то из второй формулы находим а > 0, а следовательно, корни x1

и x2 меньше а. Если а = 0, то один из корней равен −1, и условие задачи снова не выполняется. Таким образом, а < 0. При а < 0 дискриминант 1 − 4a положителен и оба корня действительные. Потребуем, чтобы меньший из них был больше а, т. е.

Это неравенство эквивалентно такому:

Возведя обе части неравенства в квадрат, мы должны позаботиться о сохранении связей, которые неявно присутствуют в этом неравенстве:

Последнее неравенство выполняется, так как мы установили, что а < 0. Первые два преобразуются к виду

Ответ.а < −2.

10.17. Так как k ≠ 0, то ветви параболы направлены вверх. Внутри интервала от −1 до +1 парабола имеет только один корень тогда и только тогда, когда на концах этого интервала трехчлен имеет разные знаки, т. е.

(k² − k − 2)(k³ + k − 2) < 0.

Разлагая каждый из трехчленов на множители, получим

(k − 2)(k + 1)(k + 2)(k − 1) < 0.

Ответ. −2 < k < −1; 1 < k < 2.

10.18. Условие, что ветви параболы направлены вверх, означает, что m > 0. Если парабола не пересекает ось Ox, то получаем систему

Если же данный квадратный трехчлен имеет действительные корни, то больший корень не должен быть положительным:

Второе неравенство второй системы (а следовательно, и вся система) не имеет решений при m > 0, так как числитель и знаменатель оказываются положительными.

Решая второе неравенство первой системы, найдем

m < −4/3, m > 1.

Принимая во внимание первое неравенство, находим решение системы: m > 1.

Пусть теперь m = 0. Правая часть данного неравенства принимает вид −4x + 1 > 0, т. е. x < ¼, и неравенство удовлетворяется не при всех положительных x.

Ответ.m > 1.

10.19. Неравенство равносильно совокупности двух систем

Решая каждое из четырех неравенств, придем к новой совокупности двух систем:

Итак, 3 ≤ x < 5, 2 < x < 3.

Ответ. 2 < x < 5.

10.20. Неравенство можно переписать в виде

(x − 3)² > (x + 2)²,

откуда после раскрытия скобок и приведения подобных получим линейное неравенство.

Ответ.x < ½.

10.21. При x > 0 неравенство можно переписать в виде

Последнее неравенство равносильно системе

которая несовместна, так как несовместны два последних неравенства.

При x < 0 входящее в данное неравенство выражение  не существует.

Ответ. Неравенство не имеет решений.

10.22. Данное неравенство можно переписать так:

Получаем совокупность двух систем

Решаем первую систему

Если правая часть второго неравенства отрицательна (x > ⅓), то неравенству будут удовлетворять все x, при которых подкоренное выражение неотрицательно (x² ≤ ¼, |x| ≤ ½). Получаем интервал решений ⅓ < x ≤ ½.

Если правая часть второго неравенства неотрицательна (x ≤ ⅓), то второе неравенство можно возвести в квадрат (дополнять систему условием 1 − 4x² ≥ 0 или |x| ≤ ⅓ не нужно). После простых преобразований получим

откуда 0 < x ≤ ⅓. Объединяя интервалы 0 < x ≤ ⅓ и ⅓ < x ≤ ½, получим решение первой системы: 0 ≤ x ≤ ½.

Перейдем ко второй системе:

Условие x < 0 обеспечивает положительность правой части второго не равенства. Возведем второе неравенство в квадрат, учитывая, что |x| ≤ ½. Получим

Ответ. −½ ≤ x < 0, 0 < x ≤ ½.

10.23. Перепишем данное неравенство в виде

Так как в неравенство входит выражение  а потому . Вынесем множитель  за скобки:

Это неравенство равносильно системе

Возведем первое неравенство системы в квадрат. При этом следует добавить условие, в силу которого выражение, «освободившееся» от влияния радикала, должно быть неотрицательным:

Так как x² − x + 1 > 0 при всех x, то первому неравенству системы могут удовлетворять только x > 0, ибо выражение справа всегда положительно. Следовательно, систему можно переписать в виде

Обозначим  тогда первое неравенство примет вид y² − 2y + 1 > 0, т. е. (y − 1)² > 0, откуда y ≠ 1. Итак,

Последняя система равносильна такой:

Ответ.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература