Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Тангенс угла наклона прямых (19) равен а и все эти прямые проходят через точку А(−5; 4). Обозначим на графике точки В(−2; 0), С(−1; 2), D(3; 2), E(4; 0), а также точки G и H, расположенные на левом и правом лучах графика (11) соответственно. Соединим точку А(−5; 4) с точками /(−2; 0), С(−1; 2), 1(3; 2) и E(4; 0). Проведем через точку А прямые AG1 || EH. Обозначим на каждой из проведенных нами через точку А прямых ее угловой коэффициент а: для AC имеем а = −2, для AB, AC, AEAD и AH1 соответственно а принимает значения: −4/3, −½, −4/9, ¼, 2.

Теперь нетрудно подсчитать, при каких а какие решения имеет данное в условии уравнение. Получим

одно решение x1 при а < −2;

решений нет при −2 ≤ а < −4/3;

одно решение x1 = x2 при а = −4/3;

два решения x1, x2 при −4/3 < а < −½;

два решения x1, x2 = x3 при а = −½;

два решения x2, x3 при −½ < а < −4/9;

три решения x1, x3, x

4 = x5 при а = −4/9;

четыре решения x1, x3, x4, x5 при −4/9 < а < −¼;

три решения x1, x3 = x4, x5 при а = −¼;

два решения x1, x5 при −¼ < а < 2;

одно решение x1 при а ≥ 2.

Замечание: при а = −2 решений нет, а при а = 2 есть единственное решение x1, которое при а = 2 существует.

9.36. После возведения в квадрат и приведения подобных можно утверждать, что уравнение равносильно системе

Дискриминант уравнения (20) равен 4a² + 12a + 9 = (2a + 3)². Он неотрицателен. Уравнение имеет один корень x = 3a при а =3/2 и два корня x1,2 = 3a ± |2a + 3| при остальных а.

Если а = −3/2, то x = −9/2. При этих значениях а и x неравенство (21) удовлетворяется.

Пусть а < −3/2. Тогда |2a + 3|= −2a − 3, т. е. x1 = 5а + 3, x2 = а − 3. Для каждого из этих корней решим неравенство (21) и учтем ограничение а < −3/2

. Пусть сначала x1 = 5а + 3, тогда:

Решением последней системы будет а < −3/2, т. е. корень x1= 5а + 3 существует при всех а < −3/2.

Пусть теперь x2 = а − 3, тогда:

Итак, корень x2 = а − 3 существует при всех а < −3/2.

Таким образом, при а < −3/2 исходное уравнение имеет два корня x1 = 5а + 3 и x2 = а − 3.

Аналогично исследуется случай а < −3/2. При этом |2a + 3| = 2a + 3 и соответственно x1 = 3a − (2a + 3); x2 = 3a + (2a + 3) = 5а + 3. Подставляем эти значения в (21). Для x1 = а − 3 получим:

Аналогично для x2 = 5а + 3 имеем:

Итак, x1 = а − 3 будет корнем исходного уравнения, когда

3/2 < а ≤ 3 и а ≥ 12.

x2 = 5а + 3 будет корнем, когда −3/2 < а ≤ −12/17; а ≥ −51/85.

Обобщим результаты на числовой оси а (рис. P.9.36).

Ответ. При a ∈ (−∞, −3/2) ∪ (−3/

2, −12/17) ∪ (−51/85, 3) ∪ [12, +∞)  уравнение имеет два корня: x1 = 5а + 3, x2 = а − 3. При а = −3 имеет один корень x = 3a = −9/2. При а ∈ (−12/17, −51/85) уравнение имеет один корень x = а − 3, а при а ∈ (3, 12) — один корень x = 5а + 3.

9.37. Уравнение можно записать в виде

x(5x/5x² − 7x + 6 + 2x/5x² − x + 6 − 1) = 0.

При x = 0 множитель в скобках существует и равен −1. Поэтому x = 0 — корень данного уравнения. Другие корни должны быть корнями уравнения

5x/5x² − 7x + 6 + 2x/5x² − x + 6 = 1.   (22)

В знаменателях стоят симметрические многочлены. Значение x = 0 не является корнем (22) и выражение (22) не теряет при этом значении смысла. Поэтому разделим числители и знаменатели каждой дроби на x:

Проведем замену

t = 5х + 6/x.    (23)

Тогда

5/t − 7 + 2/t − 1 = 1.    (24)

Дальше решение стандартно. Уравнение (24) имеет корни t1 = 13 и t2 = 2. Подставляя их в (23), найдем для t1 значения x2 = 2, x3 = 3/5. Для t2 решений нет.

Ответ.

0; 2; 3/5.

9.38. Пусть x + y = u, xy = v. Тогда получим

Во второе уравнение подставим u² = v + 327:

(327 − v)² − v² = 84 693,

или

327² − 2 · 327v = 84 963.

Так как 84 693 = 327 · 259, то сократим уравнение на 327 и найдем v = 34, u² = 361.

Остается решить две системы:

Ответ. (2, 17), (17, 2), (−2, −17), (−17, −2).

Глава 10

Алгебраические неравенства

Ответы к упражнениям на с. 59, 62 и 63.

1. Получим совокупность неравенств, имеющую те же самые решения.

2. Получим систему неравенств, не имеющую решений.

3. Ответ. −1 < x ≤ 1, 5 < x ≤ 7, x > 8.

4. Вначале нужно переписать неравенство в виде

(x5/2)(zx − 3)(x − 4)² ≤ 0.

Последний множитель показывает, что точка 4 обязательно должна принадлежать множеству решений, этим его влияние ограничивается.

Ответ.5/2 ≤ x ≤ 3, x = 4.

5. Поскольку неравенство строгое, то множители, стоящие в знаменателе, и множители, стоящие в числителе, играют одинаковую роль. Данное неравенство равносильно такому:

(x + 3)²(x + 1)(x − 2)(x − 4)²(x − 5) < 0.

Достаточно решить неравенство

(x + 1)(x − 2)(x − 5) < 0

и исключить, если они попали в множество решений, точки x = −3, x = 4.

Ответ.x < −3, −3 < x < −1, 2 < x < 4, 4 < x < 5.

6. 0 ≤ ax² + + с < 9.

7.ax² + + с ≥ 9; здесь не нужно заботиться о знаке подкоренного выражения, так как после возведения в квадрат получаем неравенство, из которого следует, что это выражение положительно.

8.

(см. пример 4 на с. 62).

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература