Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Пусть а + 2d = 0. Если аd = 3, то d = −3, а = 6. Получим число 630. Если аd = 6, то d = −6, а = 12, что невозможно.

Пусть теперь а + 2d = 5. Когда аd = 3, получим d = 2, а = 1, что даст число 135. Когда аd = 6, получим d = −1, а = 7, что приводит к числу 765. Поскольку все возможности исчерпаны, задача решена.

Ответ. 630; 135; 765.

19.12. Задачу можно решить, обозначив через x цифру единиц, а через q знаменатель прогрессии. Используя условия задачи, мы придем к двум уравнениям:

100xq² + 10xq  + x − 594 = 100x + 10xq + xq², (x + 1) + (xq² + 1) = 2(xq + 2).

Первое уравнение можно переписать в виде

x(q² − 1) = 6,

а второе — в виде

x(q² − 2q + 1) = 2,   т. е. x(q − 1)² = 2.

Деля первое уравнение на второе, получим

q + 1/q − 1 = 3,   q = 2.

Следовательно, x = 2.

Задачу можно решить перебором, если воспользоваться тем, что цифры числа образуют геометрическую прогрессию, причем цифра сотен больше пяти (так как число больше 594). Можно доказать, что имеются лишь три возможности: 842, 931 и 964. Второе и третье из этих чисел нужно отбросить, так как 931 − 594 ≠ 139 и 964 − 594 ≠ 469. Остается убедиться, что для числа 842 все условия задачи выполнены.

Требование, чтобы числа x + 1, хq + 2, хq² + 1 образовывали арифметическую прогрессию при таком решении, оказывается лишним.

Ответ. 842.

19.13. Пусть в колхозе было n комбайнов, один смог бы убрать весь урожай за x ч непрерывной работы, а при работе по плану все комбайны одновременно находились в поле y ч. Так как все комбайны могут справиться с уборкой за 24 ч, а производительность одного комбайна 1

/x, то

24/x n = 1,   т. е. 24n = x.

Если комбайны работают по плану, то, работая вместе, они сделали п1/xy часть всей работы. Кроме этого, первый комбайн работал n − 1 ч, второй n − 2, а (n − 1)−й работал один час. Учитывая все это, получим уравнение

n − 1/x + n − 2/x + ... + 1/x + n1/xy = 1,

или

n − 1/2nny = x.

Так как x = 24n, то из этого уравнения можно выразить y через n:

y = 24 − n − 1/2.

Наконец, последнее условие задачи можно записать в виде уравнения

(n + y − 7)(n − 5)1/x = 1.

Подставляя вместо x и y их выражения через n, придем к квадратному уравнению

( n + 17 − n − 1/2)(n − 5) = 242n,

т. е. n² − 18n − 175 = 0.

Решая это уравнение, найдем n1 = 25, n2 = −7. Второй корень не имеет смысла.

Ответ. 25.

19.14. Пусть братьям a

, aq и aq² лет. Тогда они получат соответственно x, xq и xq² p.

Через 3 года им будет a + 3, aq + 3 и aq² + 3 лет, причем старшему окажется вдвое больше лет, чем младшему:

aq² + 3 = 2(a + 3).  (1)

При дележе через 3 года младший брат получит x + 105, средний xq + 15. Чтобы узнать, сколько получит старший брат, вычтем эти деньги из всей суммы:

x + xq + xq² − (x + 105) − (xq + 15) = xq² − 120.

Так как братья делят деньги пропорционально их возрасту, то получим еще два уравнения:

Уравнение (1) позволяет записать второе из уравнений (2) так:

2(x + 105) = xq² − 120,

т. е.

x(q² − 2) = 330. (3)

Если в (1) раскрыть скобки, а затем вынести за скобки a, то

a(q² − 2) = 3.   (1′)

Сравним с уравнением (3):

x = 110a.

Первое из уравнений (2) можно переписать так:

(110a + 105)(aq + 3) = (110aq + 15)(a + 3), т. е. 5aq − 7a = 6.

Решим его совместно с уравнением (1′):

Из первого уравнения а = 6/5q − 7. Подставим во второе. После преобразований получим квадратное уравнение

6q² − 15q + 9 = 0,

откуда q1 = 3/2 , q2 = 1.

Второй корень посторонний, так как тогда всем братьям одинаковое количество лет и никто из них не может через 3 года стать вдвое старше другого.

Ответ. 12, 18, 27.

19.15. Пусть а, b, с и а

², b², с². Другими словами, 2b = а + с и b4 = а²с². Если первое уравнение возвести в квадрат

4b² = а² + 2 + с²,

а второе записать в виде b² = |ac|, то, сравнивая левые части этих равенств, найдем

а² + 2+ с² = 4|ac|.

Если а и с одного знака, получаем уравнение

а² − 2 + с² = 0,    т. е.    (ас)² = 0,

откуда а = с. Следовательно, а² = с² и знаменатель прогрессии а², b², с² равен 1. Если а и с разных знаков, получаем уравнение

а² + 6ас + с² = 0.

Разделим на а² (по условию а ≠ 0) и решим уравнение

(c/a)² + 6c/a + 1 = о

относительно c/a:

c/a = −3 ± √8.

Так как c²/a² = q², то

q² = (−3 ± √8)².

Числа а², b² и с², образующие геометрическую прогрессию, положительны. Следовательно, q > 0. Таким образом, из последнего уравнения

q

2,3 = 3 + √8.

Ответ. 3 − √8; 1; −3 + √8.

19.16. При n = 1 формулы верны:

Предположим, что эти формулы верны для n = k, и докажем, что они верны для n = k + 1:

Так как  то предел последовательности равен a + ⅔(ba) = a+ 2b/3.

Ответ. a + 2b/3.

19.17. Данное уравнение равносильно совокупности двух уравнений

(8a − 3)x + (14a + 5)x = 2kπ, (14a + 5)x − (8a − 3)x = 2nπ,

или

(11a + 1)x = kπ, (3a + 4)x = nπ.

Так как по условию a > 0, то 11a + 1 ≠ 0 и 3a + 4 ≠ 0. Поэтому

xk = kπ/11a + 1, xnnπ/3a + 4.

Значения xk и xn при k, = 0, 1, 2, ... (по условию x ≥ 0) образуют две прогрессии с разностями

d1 = π/11a + 1, d2 = π/3a + 4

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература