Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

сумма которого равна 3/2. Однако, с другой стороны, его сумма есть ни что иное, как S − S/2 = S/2. Таким образом, S/2 = 3/2 и, следовательно, S = 3.

Ответ. 3.

Глава 21

Соединения и бином

21.1. Присвоим каждому из сидящих за круглым столом номер: а1, а2, ..., аn. Образовывая циклические перестановки: аn, а1, а2, ..., аn − 1; ап − 1, аn, а1, а2, ..., ап − 2 и т. д., мы будем получать тот же способ размещения за столом. Таких циклических перестановок можно составить n.

Кроме этого, нужно учесть, что сосед слева и сосед справа неразличимы, т. е. перестановки а1, а2, ..., ап и а1, аn, аn − 1, ..., а2 дают одно и то же размещение за столом. Так как всего возможно n! перестановок, из которых каждые 2n одинаковы, то искомое число равно

n!/2n = ½(n

− 1)!.

Ответ. ½(n − 1)!.

21.2. Всего из пяти элементов можно составить Р5 перестановок. Среди них будет Р4, y которых на первом месте а1, и Р4, y которых на первом месте а2. Однако перестановки, y которых на первом месте а1, а на втором месте а2, попали и в первую, и во вторую группы. Таких перестановок Р3.

Поэтому искомое число перестановок равно

Р5 − (2P4Р3) = 78.

Ответ. 78.

21.3. Из семи разрядов три должны быть заняты двойками, что дает  вариантов. На каждое из оставшихся мест можно поместить любую из восьми цифр, благодаря чему каждый из предыдущих вариантов даст еще 84 возможностей.

Ответ.

21.4. Предположим, что в каждое число входят три различные единицы: l1, l2, l3, а остальные цифры 0, 2, 3, 4 и 5 равноправны. Тогда можно получить Р8 различных чисел. Отсюда нужно исключить Р7 чисел, начинающихся с нуля.

На самом деле разные единицы неразличимы. Другими словами, вместо одного числа мы получим Р3 одинаковых чисел, отличающихся лишь взаимными перестановками единиц.

Ответ.

21.5. Предположим, что каюты неравноценны. Это дает в 8! раз больше вариантов, чем в случае равноценных кают, что мы учтем позднее.

В первую каюту можно заселить любых четырех из 32 экскурсантов, что можно сделать  способами, во вторую — любых четырех из 28 оставшихся и т. д. В итоге получим

способов. Это число остается разделить на 8! и произвести упрощения.

Ответ..

21.6. Рассмотрим k−й член суммы

Данную сумму можно переписать в виде

Ответ.n · 2n − 1.

21.7. Из разложения

выделим действительную часть и приравняем действительной части комплексного числа (1 + i)n. В самом деле,

т. е.

где n − 1 ≤ 2k ≤ n.

Последнее ограничение означает, что через 2k обозначено то из чисел n − 1 и n, которое является четным.

Ответ.

21.8. Условию задачи удовлетворяют такие n, для которых равенство

выполняется хотя бы для одного k. Заметим, что 1 ≤ k ≤ n − 1; n ≥ 2. Равенство (1) перепишем в виде

что после простых преобразований даст

4k² − 4nk + п² − n − 2 = 0,

откуда

Чтобы выражение в правой части было целым, нужно сначала потребовать

n + 2 = m²,   т. е.   n = m² − 2.

Поскольку n ≥ 2, то т² ≥ 4 и m ≥ 2. Тогда

Если взять знак минус, получим

Число, стоящее в числителе, четное при всех m. Значение m = 2 нужно исключить, так как тогда k1 = 0, что невозможно. Если же m ≥ 3, то m + 1 ≥ 4, а m − 2 ≥ 1. Следовательно, k1 ≥ 2. Потребуем теперь, чтобы выполнялось второе условие: k1 ≤ n − 1, т. е.  что равносильно неравенству m² + m − 4 ≥ 0. Последнее неравенство справедливо при всех m ≥ 3.

Остается исследовать

Так как условие n ≥ 2, из которого следует, что m

 ≥ 2, должно выполняться и для k2, то формула (3) по сравнению с (2) может дать лишь одно дополнительное значение: m = 2. Однако при m = 2 получим, что k2 = 2 и n = 2. Это противоречит требованию k ≤ n − 1. Таким образом, формула (3) не дает новых значений m, а следовательно, и n.

Ответ.n = m² − 2, где m = 3, 4, 5, ... .

21.9. Так как

(a + b + c + d)n = [(a + b) + (c + d)]n = (a + b)n + Cn1(a + b)n − 1(c + d) + ... + (c + d)n,

то после раскрытия скобок получим все неподобные члены. Их число будет равно

(n + 1) · 1 + n · 2 + (n − 1) · 3 + ... + 2n + 1(n + 1),

где для симметрии к крайним членам приписаны множителями единицы. Чтобы вычислить эту сумму, запишем ее k−й член: (n + 2 − k) = (n + 2)kk². Тогда наша сумма примет вид

Ответ.

21.10.

Предположим, что 0 ≤ k ≤ n − 1. Запишем данное выражение в виде

(1 + x + x² + ... + xk − 1 + xk + xk + 1 + ... + xn − 1)².

Члены, содержащие xk, могут быть получены только в результате почленного перемножения членов суммы 1 + x + x² + ... + xk − 1 + xk с членами той же суммы, записанной в обратном порядке, т. е.

1 · хk, x · хk − 1, ..., хk − 1 · x, xk · 1

Так как слагаемых будет k + 1, то и коэффициент при xk будет равен k + 1.

Предположим теперь, что n − 1 < k ≤ 2(n − 1). Тогда нужно почленно перемножить суммы

xkn + 1 + ... + xn − 1, xn − 1 + ... + xkn + 1,

в результате чего получим 2n − k − 1 членов, содержащих xk.

Ответ. k + 1, если 0 ≤ k ≤ n − 1;

2n − k − 1, если n − 1 < k ≤ 2n − 2.

21.11. Сравним коэффициент члена разложения с номером k + 1 с коэффициентом десятого члена разложения:

Так как знаменатели одинаковы, то

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература