Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

18.14. Обозначим скорость товарного поезда до остановки через x, расстояние AB через y, а расстояние AC через z. Тогда пассажирский поезд шел вначале со скоростью mx, а после остановки оба поезда шли соответственно со скоростями 5x/4 и 5mx/4. Весь путь без остановки товарный поезд прошел бы за y/x ч. Поскольку он сделал остановку на t ч в z км от А, а затем прошел оставшиеся (yz) км со скоростью 5x/4, то он прошел весь путь за

z/x + 4(yz)/5x + t ч.

Следовательно,

y/x + t1 = z/x + 4(yz)/5x + t.

Аналогичное уравнение составляем для пассажирского поезда, который шел в обратном направлении:

y/mx + t2 = yz/mx + 4y/5mx + t.

Чтобы ответить на вопрос задачи, нужно из времени, за которое товарный поезд прошел отрезок AC, вычесть время, за которое пассажирский поезд прошел расстояние BC. В наших обозначениях эта разность запишется так:

z/x − yz/mx.

Именно это выражение нам нужно определить с помощью полученных выше уравнений. Мы может добиться этого, решив уравнения относительно z/x и y/x. После простых преобразований система примет вид

Умножив первое уравнение на −4 и сложив со вторым, найдем z/x, а умножив его на −5 и сложив со вторым, найдем y/x:

y/x = 25(tt1) − 5m(t2t), z/x = 20(tt1) − 5m(t2t).

Остается подставить найденные значения в выражение

(m + 1)z/mxy/mx.

Ответ. 5/m[(4m − 1)(tt1) − m²(t2t)].

18.15. Обозначим скорость самолета через x, а скорость вертолета через y. До первой встречи вертолет летел d/y ч, а самолет — d/x ч. Так как самолет вылетел на t ч позднее, то

d/y = d/x + t.

Второе уравнение мы получим из условия второй встречи. Вертолет к этому моменту находился в d км от В и пробыл в полете sd/y ч. Самолет, преодолев расстояние s + d, пробыл в полете s + d/x ч. Следовательно,

sd/y = s + d

/x + t.

Хотя полученную систему уравнений можно решить, а затем ответить на вопрос задачи, мы сначала вычислим интересующую нас величину в предположении, что x и y известны. Вертолет прилетел в В через s/y ч после вылета. Самолет вернулся в А через (t + 2s/x) ч после того, как вертолет вылетел из А. Нас интересует величина

t + 2s/xs/y

— на столько позднее самолет вернулся в А, чем вертолет прилетел в В. Таким образом, из полученных уравнений нужно определить 1/x и 1/y. Умножив первое уравнение на ds, а второе на d и сложив, найдем

(s + d)d/x + d(ds)/xt(ds) + td = 0, т. е.  2d²/x = t(s − 2d),

откуда

1/x =  t(s − 2d)/2d².

Из первого уравнения определяем 1/y:

1/y = 1/x + t/d = ts/2d².

Следовательно,

t + 2s/

xs/y = t2st(s − 2d)/2d² − ts²/2d² = t + st(s − 4d)/2d².

Задача имеет решение, если все участвующие компоненты положительны. Чтобы величина 1/x имела смысл, необходимо s > 2d.

По условию вертолет прилетел в В раньше, чем самолет вернулся в А. Поэтому

t + st(s − 4d)/2d² > 0,    т. е.    s² − 4sd + 2d² > 0.

Получаем квадратное неравенство относительно отношения s/d:

(s/d)² − 4s/d + 2 > 0,

откуда

s/d < 2 − √2 или  s/d > 2 + √2.

Первое решение придется отбросить, так как тогда s < 2d − √2 d, а это противоречит условию, что s > 2d.

Ответ.  t + st(s − 4d)/2d², s > (2 + √2)d.

18.16. Устье реки, на которой стоит порт M, обозначим через А, а устье второй реки — через В. Расстояние MA обозначим буквой x, а расстояние BN — буквой y. Искомое расстояние тогда будет равно s − (x

+ y). Путь от M до N пароход прошел за:  ч — путь по первой реке (по течению), s − (x + y)/v ч — путь по озеру и  ч — путь по второй реке (против течения). Так как весь путь пароход прошел за t ч, то получаем уравнение

Аналогично для пути от N до M получим уравнение

Приравнивая левые части этих уравнений, получим

т. е.

Подставим найденное выражение для x в первое уравнение и найдем

следовательно,

Остается найти s − (x + y).

Ответ.

18.17. Примем расстояние AB за единицу. Пусть скорости пассажирского, курьерского и скорого поездов равны v, 2v и u соответственно (в долях этой единицы).

Тогда время, которое находились в пути до встречи скорый и курьерский поезда, равно 1/u + 2v, а время до встречи скорого и пассажирского будет равно 1/u + v. По условию

1/u + 2v ≥ 10½ − 8 = 5/2,    (13)

1/u + v − 1/u + 2v ≥ 1.    (14)

Нам известно также, что скорый поезд преодолевает расстояние AB за 55 ч. Следовательно, за 1 ч он проходит 6/35 AB, т. е. u = 6/35. Подставим это значение u в каждое из предыдущих неравенств, находим, что, с одной стороны, v ≤ 4/35, а, с другой стороны, 4/35 ≤ v ≤ 9/70. Обоим неравенствам удовлетворяет единственное значение v = 4/35, т. е. пассажирский поезд находился в пути из В в А 8 ч 45 мин и прибыл в А в 16 ч 45 мин.

Полезно обратить внимание на то обстоятельство, что решение системы неравенств, казалось бы, упростится, если неравенства (13) и (14) сложить и заменить их суммой второе неравенство. Однако система неравенств

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература