Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

При решении уравнений удобно пользоваться теоремами: уравнение cos x = cos у равносильно совокупности уравнений x + у = 2kπ, xу = 2lπ; уравнение sin x = sin у равносильно совокупности уравнений x + у = (2k + 1)π, xу = 2lπ. Обратите внимание на то обстоятельство, что в разных уравнениях, входящих в совокупность, вообще говоря, используют разные буквы для обозначения произвольного целого числа. Это следует из того, что уравнения для x + у и для xу решаются независимо одно от другого. Переход от уравнения tg x = tg у к уравнению xу = πk может привести к приобретению посторонних решений, если tg x и tg у перестают существовать.

Однородные уравнения. Уравнение вида

а0 sink x + а1 sink − 1 x cos x + ...

... + аk1 sin x cosk − 1 x + аk cosk x = 0     (1)

называется однородным, так как все слагаемые его левой части имеют одинаковую степень относительно sin x и cos x.

При α0 ≠ 0 среди решений уравнения (1) не содержится значений x, при которых cos x = 0. В самом деле, полагая cos x = 0, мы получаем из уравнения (1): а0 sink x = 0, откуда sink x = 0, так как а0 ≠ 0 по условию. Но это невозможно, поскольку нет таких значений x

, при которых sin x и cos x одновременно обращаются в нуль.

Аналогично при ак ≠ 0 среди решений уравнения (1) не содержится значений x, при которых sin x = 0.

Наметим пути решения уравнения (1). Рассмотрим два случая.

Случай 1. a0 ≠ 0 и аk ≠ 0. В этом случае, разделив уравнение (1) на cosk x, мы получим (поскольку cos x ≠ 0) равносильное ему алгебраическое уравнение

а0ук + а1уk − 1 + ... + аk − 1у + аk = 0       (2)

относительно у = tg x.

Можно также делить уравнение (1) на sink x. Тогда (поскольку sin x ≠ 0) мы получим равносильное уравнению (1) алгебраическое уравнение

а0 + а1z + ... + аk − 1zk − 1 + аkzk = 0      (3)

относительно z = ctg x.

Пример 1. Решить уравнение

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.     (4)

Разделив его на cos³ x, получим алгебраическое уравнение

у³ − 2у² − у + 2 = 0,

где у = tg x. Последнее уравнение легко решается путем разложения его левой части на множители, и мы находим корни:

у1 = −1, у2 = 1, у3 = 2.

Теперь остается решить совокупность уравнений

tg x = −1, tg x = 1, tg x

= 2.

Мы получим следующие корни уравнения (1):

x = nπ ± π/4 , x = nπ + arctg 2.

Случай 2. a0 = 0, или ak = 0, или а0 = ak = 0. Пусть, например, a0 = ak = 0, а a1 ≠ 0 и ak − 1 ≠ 0. Тогда уравнение (1) примет вид

a1 sink − 1 x cos x + a2 sink − 2 x cos² x + ...

... + ak − 2 sin² x cosk − 2 x + ak − 1 sin x cosk − 1 x = 0.      (5)

В левой части уравнения выносим за скобки все, что возможно (в случае уравнения (5) мы можем вынести за скобки произведение sin x cos x). В результате получим уравнение

sin x cos x (a1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x) = 0,

распадающееся на совокупность уравнений

sin 2х = 0,

a

1 sink − 1 x + a2 sink − 2 x cos x + ...

... + ak − 2 sin x cosk − 2 x + ak − 1 cosk − 1 x = 0,

первое из которых решается просто (см. с. 77), а пути решения второго уравнения показаны в случае 1).

Пример 2. Решить уравнение

sin4 x cos x − 2 sin³ x cos² x − sin² x cos³ x + 2 sin x cos4 x = 0.

Левую часть уравнения разлагаем на множители:

sin x cos x (sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x) = 0. Получаем совокупность уравнений

sin x = 0, cos x = 0,

sin³ x − 2 sin² x cos x − sin x cos² x + 2 cos³ x = 0.

Решения первых двух уравнений даны на с. 77. Третье уравнение подробно рассмотрено в примере 1.


Системы тригонометрических уравнений. Предположим, что, преобразовывая систему тригонометрических уравнений, мы пришли к системе

Если переписать эту систему в виде

то, складывая и вычитая полученные уравнения, придем к выводу, что

Решили ли мы систему? Оказывается, нет. Решить систему — значит, найти все ее решения, а из поля нашего зрения выпало такое очевидное решение как x = /2, уπ/4 (ни при каком целом n из выражения π/43nπ/2 нельзя получить /4).

В чем же ошибка? Ошибка очень проста: переходя от первоначальной системы к выражениям относительно x

+ у и xу, мы должны были сохранить их «независимость», которая присутствовала в исходной системе. Вместо этого мы «связали» их введением общего целочисленного переменного n.

Правильным было бы такое решение:

откуда

x = π/4 + (2т + n), у = − π/4π/2 (2тn).

Прежде чем приступать к решению задач, ознакомьтесь с введением к главе 9.


Решите уравнения:

13.1. 1 + sin 2x + 2√2 cos 3x sin (xπ/4) = 2 sin x + 2 cos 3x + cos 2x.

13.2..

13.3. .

13.4. tg 2x tg 7x = 1.

13.5.

13.6. 2 tg 3x − 3 tg 2x = tg² 2x tg 3x.

13.7. sin³ x + cos³ x1/√2 sin 2x sin (xπ/4) = cos x + sin 3x.

13.8. 4 tg 4x − 4 tg 3x − tg 2x = tg 2x tg 3x tg 4x.

13.9. Найдите решения уравнения

лежащие в интервале (0, 2π).

13.10. Решите уравнение

sin (x − α) = sin x − sin α.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература