Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

которое устанавливается следующим рассуждением. Если первая буква в слове из k букв фиксирована, то в оставшиеся k − 1 ячеек можно разметить буквы  способами. Для каждого из этих способов остается n возможностей для выбора буквы, стоящей на первом месте. В результате мы получим все размещения с повторениями из n по k.

Размещения с повторениями, образованные из n элементов a1, a2, ..., аn так, что каждый из этих элементов входит в размещение по крайней мере один раз, называются перестановками с повторениями. Если известно, что элемент a1 входит α1 раз, элемент a2 входит α2 раз, ..., элемент an входит αn раз, то число всевозможных таких перестановок обозначают  и оно может быть найдено по формуле

Два сочетания с повторениями из n элементов по k в каждом считаются различными тогда и только тогда, когда они отличаются по крайней мере одним элементом или какой-нибудь элемент входит в эти соединения различное число раз. Число всевозможных сочетаний с повторениями определяется по формуле

вывод которой состоит в доказательстве того факта, что допущение о возможности повторений элементов равносильно увеличению числа элементов, из которых образуются сочетания, на k − 1.

Для любого натурального n справедливы разложения

Для биномиальных коэффициентов справедливы равенства:


21.1. Сколькими различными способами можно усадить за круглый стол n человек, если два способа считаются одинаковыми, когда каждый человек имеет тех же соседей (левый и правый соседи не различаются).

21.2. Имеется одна перестановка из пяти элементов: а1, а2, а3, а4, а5. Найдите число всех перестановок из этих элементов, в каждой из которых на первом месте стоит элемент, отличный от а1, а на втором — элемент, отличный от а

2.

21.3. Сколько можно образовать семизначных чисел из цифр 1, 2, 3, ..., 8 с тем, чтобы цифра 2 входила в каждое число не меньше, чем три раза?

21.4. Сколько восьмизначных чисел можно образовать из цифр 0, 1, 2, 3, 4, 5, если в каждом числе цифра 1 содержится три раза, а остальные цифры по одному разу?

21.5. Экскурсанты заказали на пароходе 8 четырехместных кают. Все места в каждой из кают и все каюты равноценны. Сколькими способами могут экскурсанты разместиться в каютах, если их 32 человека?

21.6. Вычислите сумму

21.7. Найдите все значения n, при которых какие-либо три последовательных коэффициента разложения бинома (x + а)n являются тремя последовательными членами арифметической прогрессии.

21.8. Найдите число неподобных между собой членов разложения

(а + b + с + d)n.

21.9. Найдите коэффициент при хk в разложении

(1 + x + x² + ... + хn − 1)².

21.10. Для бинома (1/5x + 2/5)n найдите натуральный показатель n, если известно, что десятый член разложения этого бинома имеет наибольший коэффициент.

21.11. Определите число отличных от нуля коэффициентов в разложении

(1 + x² + х5)20 = а0 + а1х + а2х² + ... + а

100х100.

21.12. Дана последовательность а1, а2, а3, ..., а10. Сколькими способами, сохраняя фиксированный порядок элементов последовательности, ее можно разбить на группы, каждая из которых состоит из одного элемента или двух рядом стоящих элементов?

21.13. На плоскости проведены m параллельных прямых и n прямых, пересекающих эти прямые и друг друга. Никакие три прямые не проходят через одну точку. На сколько областей (частей) эти прямые разбивают плоскость?

Глава 22

Обратные тригонометрические функции

Определения обратных тригонометрических функций приводят к следующим соотношениям.

Если arcsin x = α (−1 ≤ x ≤ 1), то sin α = x и −π/2 ≤ α ≤ π/2 .

Если x ≥ 0, то 0 ≤ α ≤ π/2 ; если x ≤ 0, то −π/ ≤ α ≤ 0.

Если arccos x = α (−1 ≤ x ≤ 1), то cos α = x и 0 ≤ α ≤ π.

Если x ≥ 0, то 0 ≤ α ≤ π/2; если x ≤ 0, то π/2 ≤ α ≤ π.

Если arctg x = α, то tg α = x и −π

/2 < α < π/2.

Если x ≥ 0, то 0 ≤ α < π/2 ; если x ≤ 0, то −π/2 < α ≤ 0.

Если arctg x = α, то ctg α = x и 0 < α < π.

Если x ≥ 0, то 0 < α ≤ π/2; если x ≤ 0, то π/2 ≤ α < π.

Имеют место следующие соотношения[14]:

arcsin x + arccos xπ/2; arctg x + arcctg x = π/2;

arcsin (−x) = −arcsin x; arctg (−x) = −arctg x; arccos (−x) = π − arccos x; arcctg (−x) = π − arcctg x.


22.1. Докажите, что

2 arctg ¼ + arctg 7/23π/4.

22.2. Представьте выражение

arctg 7/9

+ arcctg 8 + arcsin √2/4

в виде значения функции arcsin x.

22.3. Представьте выражение

arctg (−2) + arcsin ⅓ + arctg (−⅓)

в виде значения лишь одной обратной тригонометрической функции.

22.4. Вычислите сумму

22.5. Найдите

arccos (sin π(x² + x − З)),

если

22.6. Докажите, что если 0 ≤ x ≤ 1, то

22.7. Докажите, что выражение arcsin  не зависит от x, если x < −1, и упростите его в этом случае.


Решите уравнения:

22.8. tg (З arcsin x) = 1.

22.9. arcsin 3x/5 + arcsin 4x/5 = arcsin x.

22.10. arcsin 2x + arcsin xπ/3.

22.11. arctg (2 + cos x) − arctg (2 cos² x/2) = π/4.

22.12.

22.13. arctg (x − 1) + arctg x + arctg (x + 1) = arctg Зx.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература