Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

19.6. Выражение, стоящее под знаком квадратного корня, умножить и разделить на 9. Число, состоящее из k девяток, равно 10k − 1.

19.7. Условия задачи можно записать в виде а1 + а3 = 2а2, а1а3 = а2² . Из этой системы нетрудно исключить а2.

19.8. Удобно ввести знаменатель прогрессии q и с его помощью записать теорему Виета для обоих уравнений. Это позволит определить q и x1. (!)

19.9. Так как корни уравнения образуют геометрическую прогрессию, то x

2 = x1q, x3 = x1q². Воспользуйтесь теоремой Виета для уравнения третьей степени.

19.10. Если приравнять выражения для удвоенной суммы n членов прогрессии и суммы всех ее членов, то получим уравнение относительно qn.

19.11. Так как число делится на 45, то оно может оканчиваться либо нулем, либо пятью. Рассмотреть эти два случая.

19.12. Если обозначить через x цифру единиц, а через q — знаменатель прогрессии, то легко составить два уравнения, отражающих условия задачи. Однако можно пойти по другому пути: поскольку цифры числа образуют геометрическую прогрессию и само число больше 594, то в нашем распоряжении только три возможности: 931, 842 и 964. (!)

19.13. Всю работу следует принять за единицу. Чтобы использовать условия задачи, нужно знать производительность одного комбайна. Однако нам неизвестно, сколько часов перед завершением работы по плану все комбайны работали вместе. Поскольку удобнее вводить одноименные неизвестные, то эту величину обозначим через y, а через x обозначим количество часов, необходимых одному комбайну, чтобы убрать весь урожай. Тогда производительность комбайна будет равна 1/x.

19.14. Пусть братьям а, аq и аq

² лет. Если младший получит x рублей, то остальные два получат xq и xq² рублей. Условия задачи позволяют составить три уравнения.

19.15. После того как числа, о которых говорится в задаче, будут обозначены буквами а, b и с и условия задачи будут переведены на математический язык, мы получим два уравнения с тремя неизвестными. Достаточно ли этого, чтобы решить задачу?

19.16. Воспользоваться методом математической индукции, что позволит доказать формулы для аn и bn.

19.17. Решив данное тригонометрическое уравнение, получим две серии углов, каждая из которых является арифметической прогрессией с известной разностью и первым членом, равным нулю. В каком случае две арифметические прогрессии могут быть объединены в одну?

K главе 20

20.1. Данное неравенство эквивалентно такому:

1/ + ... + 1/n² < 1.

Оценить каждое слагаемое так, чтобы легко было оценить всю сумму, стоящую слева.

20.2. Домножить все члены на d.

20.3. Чтобы разложить дробь  на простейшие, можно начать с разложения дроби , а результат умножить на .

20.4. Слева стоит сумма членов геометрической прогрессии.

20.5. Выписать все коэффициенты многочлена 1 + x

+ 2x² + ... + nxn и под ними написать коэффициенты того же многочлена, записанные в обратном порядке. Рассмотреть сумму произведений стоящих друг под другом чисел.

20.6. В левой части неравенства стоит абсолютная величина суммы членов бесконечной геометрической прогрессии со знаменателем −2x.

20.7. Каждое слагаемое k · k! можно представить в виде (k + 1)k! − k(k − 1)!. При этом следует иметь в виду, что 0! = 1. (!)

20.8. Коэффициенты в правой части образуют арифметическую прогрессию с разностью 3. Если домножить Sn на x², то справа получим сумму, все члены которой, кроме крайних, имеют коэффициент, отличающийся от подобного коэффициента Sn на 3.

20.9. Рассмотреть тождество

(x + 1)5 = x5 + 5x4 + 10x³ + 10x² + 5x

+ 1

и положить в нем последовательно x = 1, 2, ..., n.

20.10. В n-й группе n членов. Рассмотрите отдельно случаи, когда n четное и n нечетное.

20.11. Удобнее найти 2Sn sin π/2n.

20.12. Можно разбить эту сумму на 1 00 сумм:

каждая из которых является суммой членов геометрической прогрессии. Однако попытайтесь решить эту задачу проще, обозначив искомую сумму через в и осуществив над ней некоторое несложное преобразование.

20.13. Общий член ряда имеет вид  Чтобы воспользоваться формулой геометрической прогрессии, нужно избавиться от 2 n в числителе. Чтобы понять, как это лучше сделать, запишите рядом два соседних члена ряда.

K главе 21

21.1. Если все, сидящие за круглым столом, одновременно сдвинуться на один стул в одном направлении, то у каждого останутся те же самые соседи.

21.2. Представить искомое число в виде разности числа всех перестановок из пяти элементов и перестановок, не удовлетворяющих условиям задачи.

21.3. Три разряда каждого числа должны быть заняты двойками. В оставшиеся четыре разряда можно поместить любые из восьми цифр, что даст 84 вариантов.

21.4. Задачу следует начать решать в предположении, что есть разные цифры l1, l2 и l3, которые входят в каждое число, а остальные пять цифр равноправны.

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература