Читаем Сборник задач по математике с решениями для поступающих в вузы полностью

Рассмотрим теперь случай, когда прямые AB и CD параллельны. Сместим отрезок AB по несущей его прямой так, чтобы его центр совпал с центром CD (рис. P.5.5, б). Если точка M (на рисунке она не изображена) принадлежит искомому геометрическому месту точек, то отношение ее расстояния до прямых AB и CD есть отношение высот в треугольниках АВМ и CDM. Площади этих треугольников будут равны тогда и только тогда, когда отношение расстояний от точки M до AB и CD будет равно отношению отрезков CD и AB. Таким образом, искомое геометрическое место есть две параллельные прямые, расстояния которых до CD и AB относятся как AB : CD.

Чтобы построить это геометрическое место точек, сместим отрезок AB по несущей его прямой так, чтобы его центр и центр E отрезка CD оказались на общем перпендикуляре к AB и CD (см. рис. P.5.5, б). Прямые DA′ и CB′ пересекутся в точке P, которая делит EF в отношении PF : РЕ = AB : CD, а прямые DB′ и СА′ пересекутся в точке Q, для которой QFQE = AB : CD. Остается на прямой EF (см. рис. P.5.5,

б) построить отрезки EP′ = FP и EQ′ = FQ. Прямые PK и QL, проведенные через P′ и Q′ параллельно AB и CD, образуют искомое геометрическое место точек.

5.6. Для данного куба с ребром а найдем сначала геометрическое место середин отрезков длины l, один из концов которых лежит на диагональной прямой верхнего основания, а другой — на не параллельной ей диагональной прямой нижнего основания. Как мы увидим, замена диагоналей на диагональные прямые позволяет упростить задачу.

Если MN — отрезок длины l, о котором идет речь в условии задачи, а расстояние между плоскостями верхнего и нижнего оснований равно а, то проекция MK отрезка MN на плоскость нижнего основания равна  (рис. P.5.6, а). Проекция G середины E отрезка MN делит MK пополам, поэтому  Треугольник MKO прямоугольный, а GO — его медиана. Следовательно,  Тем самым мы установили, что для фиксированного l точка G всегда отстоит от точки О на одинаковом расстоянии, равном , т. е. лежит на окружности радиусом  с центром в точке О.

Итак, если точка E принадлежит искомому геометрическому месту, то она лежит в плоскости, параллельной основаниям куба и проходящей через середину F отрезка OO1, и принадлежит окружности радиусом  с центром в точке F.

Для той измененной задачи, которую мы рассматриваем, верно и обратное утверждение: любую точку E, принадлежащую описанной выше окружности, можно спроецировать в точку G плоскости нижнего основания и радиусом GO

сделать из точки G засечки M и K на диагональных прямых нижнего основания. Построив перпендикуляр NK, мы сможем найти и отрезок МN длины l, серединой которого является точка E.

Теперь остается учесть тот факт, что точка E и отрезок МN не должны покидать пределы куба.

Для этого нужно уловить тот момент, после которого один конец отрезка MN, например M, покинет куб. Ясно, что это произойдет, когда точка M совместится с одной из вершин квадрата ABCD. Пусть точка M совпала с вершиной А (рис. P.5.6, б). B зависимости от длины l отрезка МN проекция K точки N расположится на отрезке OB. При изменении длины отрезка МN точка K пробегает весь отрезок BO, а середина G отрезка MK пробегает в это время отрезок А2Р, являющийся средней линией треугольника АВO.

Теперь ясно, что проекция точки E на плоскость нижнего основания куба не может выйти из квадрата А2В2С2D2 (рис. P.5.6, в).

Итак, искомое геометрическое место точек расположено в горизонтальном сечении куба, проходящем через его центр. Это — часть окружности с центром в центре куба, не выходящая за пределы квадрата, проецирующегося в А

2В2С2D2.

Глава 6

Свойства чисел. Делимость

6.1. Имеем p² − 1 = (p − 1)(p + 1), а p − 1, p, p + 1 − три последовательных числа, из которых p > 3 простое. Следовательно, p − 1 и p + 1 — два последовательных четных числа, т. е. одно из них обязательно делится на четыре, а произведение делится на восемь. Известно, что из трех последовательных целых чисел одно делится на три. Но p — простое, следовательно, на три делится либо p − 1, либо p + 1. Мы доказали, что p² − 1 делится на 8 · 3 = 24.

6.2. Способ 1. Предположим, что n³ + 2n делится на 3 при n = k. (Если n = 1, то это очевидно.) Тогда при nk + 1 получим

(k + 1)³ + 2(k + 1) = k³ + 3k² + 3k + 1 + (2k + 2) = (k³ + 2k) + 3k² + 3k + 3.

Так как k

³ + 2k делится на 3, то и (k + 1)³ + 2(k + 1) тоже делится на 3. B силу принципа индукции утверждение доказано.

Способ 2. Так как n³ + 2n = n(n² + 2), то при n = 3k делимость на 3 очевидна. Если же n = 3k ± 1, то n² + 2 = (3k ± 1)² + 2 = 9k² ± 6k + 3 и также делится на 3.

6.3. Разложим данное число на множители двумя способами:

3105 + 4105 = (35)21 + (45)21 = 24321 + 102421 = (243 + 1024)(24320 − ... + 102420) = 181 · 7(24320 − ... + 102420);

3105 + 4105 = (37)15 + (47)15 = 218715 + 16 38415 = (2187 + 16 384)(218714 − ... + 16 38414) = 18 571(218714 − ... + 16 38414) = 49 · 379(218714 − ... + 16 38414).

Перейти на страницу:

Похожие книги

Значимые фигуры. Жизнь и открытия великих математиков
Значимые фигуры. Жизнь и открытия великих математиков

Несмотря на загадочное происхождение отдельных своих элементов, математика не рождается в вакууме: ее создают люди. Некоторые из этих людей демонстрируют поразительную оригинальность и ясность ума. Именно им мы обязаны великими прорывными открытиями, именно их называем пионерами, первопроходцами, значимыми фигурами математики. Иэн Стюарт описывает открытия и раскрывает перед нами судьбы 25 величайших математиков в истории – от Архимеда до Уильяма Тёрстона. Каждый из этих потрясающих людей из разных уголков мира внес решающий вклад в развитие своей области математики. Эти живые рассказы, увлекательные каждый в отдельности, складываются в захватывающую историю развития математики.

Иэн Стюарт , Йэн Стюарт

Биографии и Мемуары / Математика / Образование и наука
"Теорія та методика навчання математики, фізики, інформатики. Том-1"
"Теорія та методика навчання математики, фізики, інформатики. Том-1"

"Теорія та методика навчання математики, фізики, інформатики. Том-1" Теорія та методика навчання математики, фізики, інформатики: Збірник наукових праць: В 3-х томах. – Кривий Ріг: Видавничий відділ НацМетАУ, 2002. – Т. 1: Теорія та мето-дика навчання математики. – 444 с. Збірник містить статті з різних аспектів дидактики мате-матики і проблем її викладання в вузі та школі. Значну увагу приділено проблемам розвитку методичних систем навчання ма-тематики та застосування засобів нових інформаційних техно-логій навчання математики у шкільній та вузівській практиці. Для студентів вищих навчальних закладів, аспірантів, наукових та педагогічних працівників.

Неизвестен Автор

Математика / Физика / Руководства / Прочая научная литература / Прочая справочная литература