Читаем Трактат об электричестве и магнетизме полностью

(𝑛-1)1

,

𝐾

(𝑛-1)2

,

…,

𝐾

(𝑛-1)(𝑛-1)

,


(9)


а через 𝐷𝑝𝑞 - минор элемента 𝐾𝑝𝑞, мы получим для величины 𝑃𝑝-𝑃𝑛 выражение


(𝑃

𝑝

-𝑃

𝑛

)𝐷

=

(𝐾

12

𝐸

12

+ и т.д. -𝑄

1

)𝐷

𝑝1

+


+

(𝐾

21

𝐸

21

+ и т.д. -𝑄

2

)𝐷

𝑝2

+ и т.д. +


+

(𝐾

𝑞1

𝐸

𝑞1

+ и т.д. +𝐾

𝑞𝑛

𝐸

𝑞𝑛

-𝑄

𝑞

)𝐷

𝑝𝑞

+ и т.д.


(10)


Тем же путём можно определить превышение потенциала любой другой точки, скажем 𝐴𝑞, над потенциалом точки 𝐴𝑛. После этого мы можем определить ток между точками 𝐴𝑝 и 𝐴𝑞 из уравнения (1) и тем самым полностью решить задачу.

281. Теперь мы продемонстрируем свойство взаимности любых двух проводников, входящих в систему, что соответствует уже рассмотренному в п. 86 свойству взаимности для статического электричества.

В выражении для потенциала 𝑃𝑝 коэффициент при 𝑄𝑞 равен -𝐷𝑝𝑞/𝐷. В выражении для 𝑃𝑞 коэффициент при 𝑄𝑝 равен -𝐷𝑞𝑝/𝐷.

Но величина 𝐷𝑝𝑞

отличается от 𝐷𝑞𝑝 только заменой символов, при которой все 𝐾𝑞𝑝 переходят в 𝐾𝑝𝑞. Как следует из соотношения (2), эти две последние величины равны друг другу, поскольку проводимость проводника одна и та же для обоих направлений. Поэтому


𝐷

𝑝𝑞

=

𝐷

𝑞𝑝

.


(11)


Отсюда следует, что та часть потенциала в точке 𝐴𝑝 которая обусловлена введением единичного тока в точку 𝐴𝑞, равна той части потенциала в точке 𝐴𝑞, которая обусловлена введением одиночного тока в точку 𝐴𝑝.

Отсюда можно вывести некоторое предложение более практического вида.

Пусть 𝐴, 𝐵, 𝐶, 𝐷 - любые четыре точки системы, и пусть ток 𝑄 входит в систему через точку 𝐴 и выходит через точку 𝐵, создавая превышение потенциала в точке 𝐶 над потенциалом в точке 𝐷 на величину 𝑃. Тогда, если сделать так, что такой же по величине ток 𝑄 будет входить в систему через точку 𝐶 и выходить через точку 𝐷, то потенциал в точке 𝐴 будет превышать потенциал в точке 𝐵 на ту же самую величину 𝑃.

Если ввести электродвижущую силу 𝐸, действующую на проводник от 𝐴 к 𝐵, и если эта электродвижущая сила вызывает ток 𝐶 от 𝑋 к 𝑌, то та же самая электродвижущая сила 𝐸, введённая в проводник в направлении от 𝑋 к 𝑌, вызовет точно такой же ток 𝐶 от 𝐴 к 𝐵.

Источником электродвижущей силы 𝐸 может быть вольтова батарея, введённая между названными точками, следует только позаботиться о том, чтобы после подключения батареи сопротивление проводника не изменилось.

282 а. Если электродвижущая сила 𝐸𝑝𝑞 действует вдоль проводника 𝐴𝑝𝐴𝑞, легко найти ток, возникающий при этом в другом проводнике системы 𝐴𝑝𝐴𝑠:


𝐾

𝑟𝑠

𝐾

𝑝𝑞

𝐸

𝑟𝑠

(

𝐷

𝑟𝑝

+

𝐷

𝑠𝑞

-

𝐷

𝑟𝑝

-

𝐷

𝑠𝑝

)/

𝐷

.


Ток равен нулю, если


𝐷

𝑟𝑝

+

𝐷

𝑠𝑞

-

𝐷

𝑟𝑝

-

𝐷

𝑠𝑝

=

0.


(12)


Но в силу (11) то же самое уравнение справедливо и в том случае, когда при наличии электродвижущей силы вдоль 𝐴𝑟𝐴𝑠 ток в проводнике 𝐴𝑝𝐴𝑞 равен нулю. Вследствие такого свойства взаимности два проводника, к которым оно относится, называются сопряжёнными.

Теория сопряжённых проводников была исследована Кирхгофом. Он сформулировал законы для линейной системы следующим образом, обходя рассмотрение потенциала.

1. (Условие «непрерывности»). В любой точке системы сумма всех токов, текущих к этой точке, равна нулю.

2. В любом замкнутом контуре, образованном проводниками, сумма электродвижущих сил, действующих в контуре, равна сумме произведений тока в каждом проводнике на его сопротивление.

Мы получаем этот результат, складывая уравнения вида (1) для замкнутого контура, когда потенциалы с необходимостью исчезают.

282 б1.

Если проводники образуют простую сеть и мы предполагаем, что в каждой её ячейке циркулирует некоторый ток, тогда в том проводнике, который является общим для двух соседних ячеек, ток будет равен разности токов, циркулирующих в этих двух ячейках, причём токи считаются положительными, если они циркулируют в направлении против часовой стрелки. Для этого случая легко доказать следующее утверждение. Пусть 𝑥 - величина тока, 𝐸 - электродвижущая сила и 𝑅 - полное сопротивление в любой ячейке. Пусть, далее, 𝑦, 𝑧, … - токи, циркулирующие в соседних ячейках, имеющих общие проводники с той, в которой течёт ток 𝑥. Сопротивление этих общих проводников обозначим соответственно через 𝑠, 𝑡, …. Тогда


𝑅𝑥

-

𝑠𝑦

-

𝑡𝑧

- и т.д. =

𝐸

.


1 Извлечено из записей лекций профессора Максвелла мистером Дж. А. Флемингом, бакалавром искусств (Сент Джонс Колледж). См. также статью м-ра Флеминга. Phil. Mag., XX, р. 221, 1885 (примечание Нивена).

Для того чтобы проиллюстрировать, как используется это правило, мы возьмём устройство, известное под названием мостика Уитстона, и будем исходить из чертежа и обозначений, принятых в п. 347. Применяя это правило к случаю трёх контуров 𝑂𝐵𝐶, 𝑂𝐶𝐴 и 𝑂𝐴𝐵 в которых циркулируют токи 𝑥, 𝑦, 𝑧 соответственно, мы получим три уравнения, а именно


(𝑎+β+γ)

𝑥

𝑦

𝑧

=𝐸,


𝑥

+(𝑏+γ+α)

𝑦

𝑧

=0,


𝑥

𝑦

+(𝑐+α+β)

𝑧

=0.


Из этих уравнений мы можем определить величину 𝑧-𝑦, ток, текущий через гальванометр в ответвлении 𝑂𝐴. Мы, однако, отсылаем читателя к п. 347 и последующим, где обсуждается этот и другие вопросы, связанные с мостиком Уитстона.

Тепло, производимое в системе

Перейти на страницу:

Похожие книги