Около 1850 математиков
подготовили самые значительные перемены в истории науки, хотя это не всегда было очевидно их современникам. Вплоть до 1800 г. главными объектами математических исследований были понятия вполне конкретные: числа, треугольники, сферы. Алгебра предложила формулы для описания операций с числами, но сами по себе формулы воспринимались как символические описания неких процессов, а не просто объектов. Но к 1900 г. формулы и их преобразования стали восприниматься как объекты, а не процессы, и предметом алгебры стали более абстрактные и обобщенные понятия. Она стала почти всеобъемлющей. Даже такие основные законы, как коммутативный закон умножения ab = ba, заняли важное место во многих областях математики.Теория групп
Эти перемены стали возможны во многом благодаря тому, что математики открыли теорию групп – раздел алгебры, который возник из безуспешных попыток решать алгебраические уравнения, особенно четвертой или пятой степени. Но только через 50 лет после своего открытия теория групп была оценена как верный подход для изучения концепции
Поворотным пунктом в теории групп стала работа молодого француза Эвариста Галуа. Ей предшествовала долгая и запутанная предыстория: идеи Галуа появились не на пустом месте. Затем последовала не менее запутанная и даже в чем-то не очень чистая постистория, когда математики принялись экспериментировать с новой концепцией, пытаясь выяснить, что в ней важно, а что нет. Однако именно Галуа четче всех представлял необходимость понятия групп в математике, описал ряд самых фундаментальных их характеристик и продемонстрировал их ценность для основ математики. Не особо удивляет то, что его работа осталась незамеченной при жизни ученого. Возможно, она казалась чересчур оригинальной, но в этом, по правде говоря, отчасти может быть повинна репутация Галуа как ярого революционера. Он был трагической фигурой, жившей во времена множества личных трагедий, и его судьба выглядит одной из самых драматичных и, пожалуй, романтичных по сравнению с прочими выдающимися математиками.
Решаем уравнения
История теории групп уходит корнями в древние таблички вавилонян с решениями квадратных уравнений. Методы вавилонян преследуют прежде всего практические цели. Это была вычислительная методика, и, судя по всему, никто из древних особо не задавался глубокими вопросами, когда ею пользовался. Если вы умеете извлекать квадратные корни и владеете основами арифметики, то сумеете решить и квадратные уравнения.
Было найдено несколько свидетельств на глиняных табличках, что вавилоняне также подступались к решению кубических уравнений и даже уравнений четвертой степени. Греки, а вслед за ними и арабы открыли геометрические способы решения кубических уравнений с помощью конических сечений. (Мы сейчас знаем, что традиционные евклидовы линии и окружности не могут точно решить эту проблему. Здесь необходимо нечто более изощренное; так случилось, что эту работу взяли на себя конические сечения.) Одной из самых заметных фигур в этой области был персидский мыслитель Омар Хайям. Он решил все возможные виды кубических уравнений с помощью целой системы геометрических методов. Однако, как мы видели, алгебраическое решение уравнений третьей и четвертой степени появилось в эпоху Возрождения в работах дель Ферро, Тартальи, Фиоре, Кардано и его ученика Феррари.