В начале 1980-х гг. Герхард Фрай открыл связь между Великой теоремой Ферма и эллиптическими кривыми. Предположим, что решение для уравнения Ферма существует; тогда вы можете построить эллиптическую кривую с очень необычными свойствами, такими, что даже само существование такой кривой покажется невероятным. В 1986 г. Кеннет Рибет развил эту идею, доказав, что если гипотеза Таниямы – Вейля верна, то кривая Фрая существовать не может. Получается, предположенное ранее решение теоремы Ферма тоже не может существовать, что доказывает Великую теорему Ферма. Этот подход основан на гипотезе Таниямы – Вейля и к тому же показывает, что Великая теорема Ферма – не просто исторический курьез. Напротив, она лежит в основе современной теории чисел.
Эндрю Уайлс с детства мечтал найти доказательство Великой теоремы Ферма, но, став профессионалом, решил, что это не более чем отдельная проблема – пусть нерешенная, но не такая уж и важная. Работа Рибета заставила его изменить мнение. В 1993 г. он заявил о доказательстве гипотезы Таниямы – Вейля для отдельного класса эллиптических кривых, достаточно общем, чтобы найти доказательство Великой теоремы Ферма. Но когда статья уже была готова к публикации, в ней обнаружился серьезный пробел. Уайлс был готов сдаться, когда «внезапно, неожиданно на меня снизошло это невероятное откровение… это было столь неописуемо прекрасно, столь элегантно и просто, и я оцепенел, не в силах поверить». При участии Ричарда Тейлора он пересмотрел свое доказательство и сумел исправить пробел. Его статья вышла в 1995 г.
В одном мы можем быть уверены: что бы ни подразумевал сам Ферма, заявляя, что у него есть доказательство его Великой теоремы, его подход был совершенно иным по сравнению с методами Уайлса. Нашел ли Ферма на самом деле простое и изящное доказательство, или он обманывал сам себя? Эту загадку, в отличие от самой теоремы, мы не разгадаем никогда.
Абстрактная математика
Развитие всё более абстрактного подхода в математике представляется естественным следствием роста разнообразия ее областей. Когда математика по большей части имела дело с числами, алгебраические символы служили не более чем простой заменой им. Но по мере развития математики росли и символы сами по себе, всё больше обретая самостоятельную жизнь. Смысл их становился всё менее важным по сравнению с правилами, по которым с ними можно было манипулировать. Но даже эти правила не были под запретом: традиционные законы арифметики, например коммутативный, далеко не всегда справлялись с новым контекстом.
И не только алгебра стала абстрактной. И анализу, и геометрии тоже пришлось сфокусироваться на более отвлеченных понятиях, причем по тем же причинам. Поворотным временем в изменении общего подхода стал период с середины XIX до середины XX в. Потом начался период консолидации, когда математики старались сбалансировать противоречия между требованиями абстрактного формализма и прикладной науки. Абстракция и обобщения шли рука об руку, но абстракция также способна и затенять значение математики. По крайней мере, больше не возникало споров о необходимости абстракции как таковой: подобные методы доказали свою важность в решении множества давних задач, таких как Великая теорема Ферма. И то, что еще вчера казалось не более чем отвлеченными играми разума, завтра могло запросто стать жизненно важной областью науки или источником хорошего дохода.