Лейбниц
Первый прорыв в этой области сделал Готфрид Вильгельм Лейбниц, юрист по профессии, посвятивший практически всю жизнь математике, логике, философии, истории и многим другим отраслям науки. Примерно в 1673 г. он начал работу над классической проблемой проведения касательной к кривой и обнаружил, что это обратная сторона проблемы измерения площадей и объемов. Последняя требовала найти кривую по заданной касательной, а первая подразумевала в точности обратное действие.
Воспользовавшись этой связью, в итоге Лейбниц сумел открыть то, что мы называем интегралами, используя сокращение omn (сокр.
К 1675 г. он уже заменил omn на знак ∫, используемый и по сей день и представляющий собой вытянутую букву s, обозначающую сумму. Он работал с понятиями бесконечно малых приращений
таким образом,
что и является обычной аппроксимацией секущей угла наклона касательной.
Лейбниц обнаружил, что это определение имеет свои недостатки. Если
К 1676 г. Лейбниц знал, как интегрировать и дифференцировать любую степень
которую сейчас мы пишем так:
В 1677 г. он вывел правила дифференцирования суммы, произведения и частного для двух функций, а к 1680-му – формулу длины дуги кривой и объема тела вращения как интегралов от различных связанных величин.
Нам известны все эти факты, а также относящиеся к ним даты из его неопубликованных записок, но впервые свои идеи о методах исчисления он опубликовал намного позже, в 1684 г. Якоб и Иоганн Бернулли сочли эти записи туманными, назвав их «скорее загадкой, чем объяснением». Но теперь понятно, что к тому моменту Лейбниц успел открыть значительную часть основ исчисления, с возможностью применить их для таких сложных кривых, как циклоида, и приблизиться к пониманию таких концепций, как кривизна. К несчастью, его записки слишком отрывочны и не поддаются прочтению.
Ньютон
Еще одним создателем методов исчисления считается Ньютон. Двое его друзей, Исаак Барроу и Эдмунд Галлей, отдавали должное таланту ученого и убеждали в необходимости опубликовать его труды. Ньютон же очень плохо переносил критику и когда в 1672 г. издал свои исследования природы света, то услышал много нелестного о своей работе, что надолго отбило у него охоту предавать огласке свои открытия. Но эпизодически он всё же отваживался издать некоторые работы и даже написал две книги. А для себя Ньютон продолжал развивать свои идеи о тяготении, и в 1684 г. Галлей снова попытался уговорить его опубликовать эти труды. Но для этого, помимо страха перед критикой, существовало и техническое препятствие. В своих рассуждениях ученый был вынужден объявить планеты точечными частицами с массой, не равной 0, но нулевыми размерами, что не соответствовало действительности и заведомо привлекло бы к нему нежелательное внимание критиков. Он хотел бы заменить эти невероятные точки на сферические тела, но не мог доказать, что силы взаимного тяготения между сферами такие же, как и между предельно малыми точками с равной массой.
Только в 1686 г. Ньютону удалось заполнить этот пробел, и в 1687 г. свет увидели «Математические начала натуральной философии». Они содержали множество свежих идей. Самыми важными стали математические формулы законов движения, расширяющие работы Галилея, и тяготения, основанные на законах Кеплера.
Главный закон движения по Ньютону (есть и дочерние, следующие из него) утверждал, что сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение. Иными словами, скорость является производной от положения тела, а ускорение – производная от скорости. Значит, даже для
Только Ньютон вместо этого над
Закон тяготения утверждает, что все материальные частицы притягиваются друг к другу с силой, пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними. Так, сила тяготения между Землей и Луной станет сильнее в четыре раза, если Луна будет ближе к Земле в два раза, или в девять, если расстояние уменьшится втрое. И снова, поскольку речь идет о воздействии силы, здесь имеется вторая производная.