Сановный противник этого метода епископ Джордж Беркли в 1734 г. в своей книге «Аналитик, или Рассуждение, адресованное неверующему математику» указывал, что это противоречит логике: делить числитель и знаменатель на
Математики пытались найти выход в аналогиях с физикой: Лейбниц прибегал к определениям «дух утонченности» и противоположному ему «дух логики», но по сути Беркли был прав. Ученым потребовался век, чтобы обнаружить убедительные ответы на его возражения, найдя для интуитивно открытого «приближения к пределу» строгое определение. Тогда-то исчисление преобразилось в более искусную науку –
Метод процветал, потому что Ньютон был прав, но лишь через 200 лет его интуитивная концепция флюксий была сформулирована с безупречной логикой, в терминах пределов. К счастью для математиков, задержка с этим открытием не застопорила процесс развития науки в целом. Исчисление оказалось слишком востребованным и важным методом, чтобы отказаться от него из-за нескольких логических софизмов. Беркли в негодовании утверждал, что метод только кажется действенным, поскольку в нем различные ошибки взаимно компенсируют друг друга. Он был прав – однако понятия не имел о том,
С дифференцированием неразрывно связан обратный ему процесс – интегрирование. Интеграл от
это площадь под графиком между значениями
Определенный интеграл
Производные и интегралы решили проблемы, из-за которых буксовали исследования предшественников. Скорости, касательные, максимумы и минимумы можно было вычислить при помощи дифференцирования. Длины, площади и объемы поддавались вычислению с помощью интегрирования. Но и это не всё. Как ни удивительно, но оказалось, что и законы природы могут быть изложены на языке исчисления.
Англия в отстающих
По мере того как росла важность исчисления для передовой науки, рос и престиж ученого, стоявшего у ее истоков. Но кто
Как мы видим, Ньютон стал задумываться над исчислением примерно с 1665 г., хотя ничего не публиковал на эту тему до 1687 г. Лейбниц, чьи идеи развивались примерно тем же путем, что и у Ньютона, начал исследовать исчисление в 1673 г. и первые труды в этой области издал в 1684 г. Оба работали независимо, но Лейбниц
Когда Лейбниц опубликовал свою книгу в 1684 г., кое-кто из окружения Ньютона ужасно возмутился – вероятно, потому, что Ньютона опередили с публикацией прямо перед финишной чертой. Все они с запозданием осознали, что было поставлено на кон, – и дружно обвинили Лейбница в краже идей Ньютона.
Примером ранних попыток использовать исчисление для описания явлений природы можно считать вопрос о подвешенной цепи. Ответ всегда оставался спорным: одни ученые утверждали, что это парабола, а другие не соглашались. В 1691 г. Лейбниц, Кристиан Гюйгенс и Иоганн Бернулли опубликовали предполагаемые решения. Самое удовлетворительное принадлежало Бернулли. Для описания положения цепи он использовал дифференциальное уравнение, исходя из ньютоновой механики и законов движения. Как показало это уравнение, решением стала не парабола, а кривая, известная теперь под названием
где
Подвешенная цепь является графиком цепной линии